UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

49 lines (48 loc) 2.26 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.fusedDepthwiseConv2DConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var DepthwiseConv2dNative_1 = require("./DepthwiseConv2dNative"); exports.fusedDepthwiseConv2DConfig = { kernelName: tfjs_1.FusedDepthwiseConv2D, backendName: 'tensorflow', kernelFunc: function (args) { var _a = args.inputs, x = _a.x, filter = _a.filter, bias = _a.bias, preluActivationWeights = _a.preluActivationWeights; var backend = args.backend; var _b = args.attrs, strides = _b.strides, pad = _b.pad, dilations = _b.dilations, dimRoundingMode = _b.dimRoundingMode, activation = _b.activation, leakyreluAlpha = _b.leakyreluAlpha; var $dilations = dilations; if ($dilations == null) { $dilations = [1, 1]; } var convInfo = tfjs_1.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad, dimRoundingMode, true /* depthwise */); var result = (0, DepthwiseConv2dNative_1.depthwiseConv2dNativeImpl)(x, filter, convInfo, backend); var toDispose = []; if (bias != null) { toDispose.push(result); result = (0, tfjs_1.add)(result, bias); } var temp = result; result = backend.applyActivation(result, activation, preluActivationWeights, leakyreluAlpha); if (temp !== result) { toDispose.push(temp); } toDispose.forEach(function (t) { return t.dispose(); }); return result; } };