@tensorflow/tfjs-node
Version:
This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).
49 lines (48 loc) • 2.26 kB
JavaScript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
Object.defineProperty(exports, "__esModule", { value: true });
exports.fusedDepthwiseConv2DConfig = void 0;
var tfjs_1 = require("@tensorflow/tfjs");
var DepthwiseConv2dNative_1 = require("./DepthwiseConv2dNative");
exports.fusedDepthwiseConv2DConfig = {
kernelName: tfjs_1.FusedDepthwiseConv2D,
backendName: 'tensorflow',
kernelFunc: function (args) {
var _a = args.inputs, x = _a.x, filter = _a.filter, bias = _a.bias, preluActivationWeights = _a.preluActivationWeights;
var backend = args.backend;
var _b = args.attrs, strides = _b.strides, pad = _b.pad, dilations = _b.dilations, dimRoundingMode = _b.dimRoundingMode, activation = _b.activation, leakyreluAlpha = _b.leakyreluAlpha;
var $dilations = dilations;
if ($dilations == null) {
$dilations = [1, 1];
}
var convInfo = tfjs_1.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad, dimRoundingMode, true /* depthwise */);
var result = (0, DepthwiseConv2dNative_1.depthwiseConv2dNativeImpl)(x, filter, convInfo, backend);
var toDispose = [];
if (bias != null) {
toDispose.push(result);
result = (0, tfjs_1.add)(result, bias);
}
var temp = result;
result = backend.applyActivation(result, activation, preluActivationWeights, leakyreluAlpha);
if (temp !== result) {
toDispose.push(temp);
}
toDispose.forEach(function (t) { return t.dispose(); });
return result;
}
};
;