UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

67 lines (66 loc) 2.89 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.fusedBatchNormConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.fusedBatchNormConfig = { kernelName: tfjs_1.FusedBatchNorm, backendName: 'tensorflow', kernelFunc: function (args) { var _a = args.inputs, x = _a.x, mean = _a.mean, variance = _a.variance; var _b = args.inputs, scale = _b.scale, offset = _b.offset; var backend = args.backend; var varianceEpsilon = args.attrs.varianceEpsilon; return (0, tfjs_1.tidy)(function () { if (mean.rank > 1) { // Fused batch norm doesn't work with high-dim mean/var/scale/offset. var inv = (0, tfjs_1.rsqrt)((0, tfjs_1.add)(variance, (0, tfjs_1.scalar)(varianceEpsilon))); if (scale != null) { inv = (0, tfjs_1.mul)(inv, scale); } var xNorm = (0, tfjs_1.mul)((0, tfjs_1.sub)(x, mean), inv); return offset != null ? (0, tfjs_1.add)(xNorm, offset) : xNorm; } var dataFormat = 'NHWC'; var depth = x.shape[3]; var opAttrs = [ (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', x.dtype), { name: 'epsilon', type: backend.binding.TF_ATTR_FLOAT, value: varianceEpsilon }, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat }, { name: 'is_training', type: backend.binding.TF_ATTR_BOOL, value: false }, ]; var numOutputs = 5; if (scale == null) { scale = (0, tfjs_1.fill)([depth], 1); } if (offset == null) { offset = (0, tfjs_1.fill)([depth], 0); } return backend.executeMultipleOutputs(tfjs_1.FusedBatchNorm, opAttrs, [x, scale, offset, mean, variance], numOutputs)[0]; }); } };