UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

80 lines (79 loc) 3.8 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __spreadArray = (this && this.__spreadArray) || function (to, from, pack) { if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) { if (ar || !(i in from)) { if (!ar) ar = Array.prototype.slice.call(from, 0, i); ar[i] = from[i]; } } return to.concat(ar || Array.prototype.slice.call(from)); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.depthwiseConv2dNativeImpl = exports.depthwiseConv2dNativeConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.depthwiseConv2dNativeConfig = { kernelName: tfjs_1.DepthwiseConv2dNative, backendName: 'tensorflow', kernelFunc: function (args) { var _a = args.inputs, x = _a.x, filter = _a.filter; var backend = args.backend; var _b = args.attrs, strides = _b.strides, pad = _b.pad, dilations = _b.dilations, dimRoundingMode = _b.dimRoundingMode; var $dilations = dilations; if ($dilations == null) { $dilations = [1, 1]; } var convInfo = tfjs_1.backend_util.computeConv2DInfo(x.shape, filter.shape, strides, $dilations, pad, dimRoundingMode, true /* depthwise */); return depthwiseConv2dNativeImpl(x, filter, convInfo, backend); } }; function depthwiseConv2dNativeImpl(input, filter, convInfo, backend) { if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME' && convInfo.padInfo.type !== 'EXPLICIT') { throw new Error("TF Backend supports only 'valid' and 'same' padding " + "while padding was ".concat(convInfo.padInfo.type)); } var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1]; var padding = convInfo.padInfo.type; var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW'; var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1]; var opAttrs = [ (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', input.dtype), { name: 'strides', type: backend.binding.TF_ATTR_INT, value: strides }, { name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding }, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat }, { name: 'dilations', type: backend.binding.TF_ATTR_INT, value: dilations } ]; if (padding === 'EXPLICIT') { var padValue = [ convInfo.padInfo.top, convInfo.padInfo.bottom, convInfo.padInfo.left, convInfo.padInfo.right ]; opAttrs.push({ name: 'explicit_paddings', type: backend.binding.TF_ATTR_INT, value: dataFormat === 'NHWC' ? __spreadArray(__spreadArray([0, 0], padValue, true), [0, 0], false) : __spreadArray([0, 0, 0, 0], padValue, true) }); } return backend.executeSingleOutput(tfjs_1.DepthwiseConv2dNative, opAttrs, [input, filter]); } exports.depthwiseConv2dNativeImpl = depthwiseConv2dNativeImpl;