UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

59 lines (58 loc) 3.01 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.conv2DBackpropInputConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.conv2DBackpropInputConfig = { kernelName: tfjs_1.Conv2DBackpropInput, backendName: 'tensorflow', kernelFunc: function (args) { var _a = args.inputs, dy = _a.dy, filter = _a.filter; var backend = args.backend; var _b = args.attrs, strides = _b.strides, pad = _b.pad, dataFormat = _b.dataFormat, dimRoundingMode = _b.dimRoundingMode, inputShape = _b.inputShape; var $dataFormat = tfjs_1.backend_util.convertConv2DDataFormat(dataFormat); var convInfo = tfjs_1.backend_util.computeConv2DInfo(inputShape, filter.shape, strides, 1 /* dilations */, pad, dimRoundingMode, false, $dataFormat); return conv2DBackpropInputImpl(dy, filter, convInfo, backend); } }; function conv2DBackpropInputImpl(dy, filter, convInfo, backend) { if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') { throw new Error("TF Backend supports only 'valid' and 'same' padding " + "while padding was ".concat(convInfo.padInfo.type)); } var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1]; var padding = convInfo.padInfo.type; var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW'; var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1]; var opAttrs = [ (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', 'float32'), { name: 'strides', type: backend.binding.TF_ATTR_INT, value: strides }, { name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding }, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat }, { name: 'use_cudnn_on_gpu', type: backend.binding.TF_ATTR_BOOL, value: true }, { name: 'dilations', type: backend.binding.TF_ATTR_INT, value: dilations } ]; var inputSizes = (0, tfjs_1.tensor1d)(convInfo.inShape, 'int32'); var res = backend.executeSingleOutput(tfjs_1.Conv2DBackpropInput, opAttrs, [inputSizes, filter, dy]); inputSizes.dispose(); return res; }