UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

52 lines (51 loc) 2.5 kB
"use strict"; /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); exports.avgPoolConfig = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend"); exports.avgPoolConfig = { kernelName: tfjs_1.AvgPool, backendName: 'tensorflow', kernelFunc: function (args) { var x = args.inputs.x; var backend = args.backend; var _a = args.attrs, filterSize = _a.filterSize, strides = _a.strides, pad = _a.pad, dimRoundingMode = _a.dimRoundingMode; var convInfo = tfjs_1.backend_util.computePool2DInfo(x.shape, filterSize, strides, 1 /* dilations */, pad, dimRoundingMode); if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') { throw new Error("TF Backend supports only 'valid' and 'same' padding " + "while padding was ".concat(convInfo.padInfo.type)); } var ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1]; var $strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1]; var padding = convInfo.padInfo.type; var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW'; var opAttrs = [ (0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', x.dtype), { name: 'ksize', type: backend.binding.TF_ATTR_INT, value: ksize }, { name: 'strides', type: backend.binding.TF_ATTR_INT, value: $strides }, { name: 'padding', type: backend.binding.TF_ATTR_STRING, value: padding }, { name: 'data_format', type: backend.binding.TF_ATTR_STRING, value: dataFormat }, ]; return backend.executeSingleOutput(tfjs_1.AvgPool, opAttrs, [x]); } };