UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

213 lines (212 loc) 10.4 kB
"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("@tensorflow/tfjs"); var tfn = require("../index"); // We still need node-fetch so that we can mock the core // tf.env().platform.fetch call and return a valid response. // tslint:disable-next-line:no-require-imports var fetch = require('node-fetch'); var OCTET_STREAM_TYPE = 'application/octet-stream'; var JSON_TYPE = 'application/json'; // Test data; var modelTopology1 = { 'class_name': 'Sequential', 'keras_version': '2.1.4', 'config': [{ 'class_name': 'Dense', 'config': { 'kernel_initializer': { 'class_name': 'VarianceScaling', 'config': { 'distribution': 'uniform', 'scale': 1.0, 'seed': null, 'mode': 'fan_avg' } }, 'name': 'dense', 'kernel_constraint': null, 'bias_regularizer': null, 'bias_constraint': null, 'dtype': 'float32', 'activation': 'linear', 'trainable': true, 'kernel_regularizer': null, 'bias_initializer': { 'class_name': 'Zeros', 'config': {} }, 'units': 1, 'batch_input_shape': [null, 3], 'use_bias': true, 'activity_regularizer': null } }], 'backend': 'tensorflow' }; describe('nodeHTTPRequest-load', function () { var requestInits; var setupFakeWeightFiles = function (fileBufferMap) { spyOn(tf.env().platform, 'fetch') .and.callFake(function (path, init) { return new Promise(function (resolve, reject) { var contentType = ''; if (path.endsWith('model.json')) { contentType = JSON_TYPE; } else if (path.endsWith('weightfile0') || path.endsWith('weightfile1')) { contentType = OCTET_STREAM_TYPE; } else { reject(new Error("Invalid path: ".concat(path))); } requestInits.push(init); resolve(new fetch.Response(fileBufferMap[path], { 'headers': { 'Content-Type': contentType } })); }); }); }; beforeEach(function () { requestInits = []; }); it('Constructor', function () { var handler = tfn.io.nodeHTTPRequest('./foo_model.json'); expect(handler == null).toEqual(false); expect(typeof handler.load).toEqual('function'); expect(typeof handler.save).toEqual('function'); }); it('Load through NodeHTTPRequest object', function () { return __awaiter(void 0, void 0, void 0, function () { var weightManifest1, trainingConfig1, floatData, handler, modelArtifacts; return __generator(this, function (_a) { switch (_a.label) { case 0: weightManifest1 = [{ paths: ['weightfile0'], weights: [ { name: 'dense/kernel', shape: [3, 1], dtype: 'float32', }, { name: 'dense/bias', shape: [1], dtype: 'float32', } ] }]; trainingConfig1 = { loss: 'categorical_crossentropy', metrics: ['accuracy'], optimizer_config: { class_name: 'SGD', config: { learningRate: 0.1 } } }; floatData = new Float32Array([1, 3, 3, 7]); setupFakeWeightFiles({ 'http://localhost/model.json': JSON.stringify({ modelTopology: modelTopology1, weightsManifest: weightManifest1, trainingConfig: trainingConfig1 }), 'http://localhost/weightfile0': floatData, }); handler = tfn.io.nodeHTTPRequest('http://localhost/model.json', { credentials: 'include', cache: 'no-cache' }); return [4 /*yield*/, handler.load()]; case 1: modelArtifacts = _a.sent(); expect(modelArtifacts.modelTopology).toEqual(modelTopology1); expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights); expect(modelArtifacts.trainingConfig).toEqual(trainingConfig1); expect(new Float32Array(tf.io.CompositeArrayBuffer.join(modelArtifacts.weightData))).toEqual(floatData); expect(requestInits).toEqual([ { credentials: 'include', cache: 'no-cache' }, { credentials: 'include', cache: 'no-cache' } ]); return [2 /*return*/]; } }); }); }); it('Load through registered handler', function () { return __awaiter(void 0, void 0, void 0, function () { var weightManifest1, floatData, model; return __generator(this, function (_a) { switch (_a.label) { case 0: weightManifest1 = [{ paths: ['weightfile0'], weights: [ { name: 'dense/kernel', shape: [3, 1], dtype: 'float32', }, { name: 'dense/bias', shape: [1], dtype: 'float32', } ] }]; floatData = new Float32Array([1, 3, 3, 7]); setupFakeWeightFiles({ 'https://localhost/model.json': JSON.stringify({ modelTopology: modelTopology1, weightsManifest: weightManifest1 }), 'https://localhost/weightfile0': floatData, }); return [4 /*yield*/, tf.loadLayersModel('https://localhost/model.json')]; case 1: model = _a.sent(); expect(model.inputs.length).toEqual(1); expect(model.inputs[0].shape).toEqual([null, 3]); expect(model.outputs.length).toEqual(1); expect(model.outputs[0].shape).toEqual([null, 1]); return [2 /*return*/]; } }); }); }); });