UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

358 lines (357 loc) 17.7 kB
"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); exports.getImageType = exports.encodePng = exports.encodeJpeg = exports.decodeImage = exports.decodeGif = exports.decodeBmp = exports.decodePng = exports.decodeJpeg = exports.ImageType = void 0; var tfjs_1 = require("@tensorflow/tfjs"); var nodejs_kernel_backend_1 = require("./nodejs_kernel_backend"); var ImageType; (function (ImageType) { ImageType["JPEG"] = "jpeg"; ImageType["PNG"] = "png"; ImageType["GIF"] = "gif"; ImageType["BMP"] = "BMP"; })(ImageType = exports.ImageType || (exports.ImageType = {})); /** * Decode a JPEG-encoded image to a 3D Tensor of dtype `int32`. * * @param contents The JPEG-encoded image in an Uint8Array. * @param channels An optional int. Defaults to 0. Accepted values are * 0: use the number of channels in the JPEG-encoded image. * 1: output a grayscale image. * 3: output an RGB image. * @param ratio An optional int. Defaults to 1. Downscaling ratio. It is used * when image is type Jpeg. * @param fancyUpscaling An optional bool. Defaults to True. If true use a * slower but nicer upscaling of the chroma planes. It is used when image is * type Jpeg. * @param tryRecoverTruncated An optional bool. Defaults to False. If true try * to recover an image from truncated input. It is used when image is type * Jpeg. * @param acceptableFraction An optional float. Defaults to 1. The minimum * required fraction of lines before a truncated input is accepted. It is * used when image is type Jpeg. * @param dctMethod An optional string. Defaults to "". string specifying a hint * about the algorithm used for decompression. Defaults to "" which maps to * a system-specific default. Currently valid values are ["INTEGER_FAST", * "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal jpeg * library changes to a version that does not have that specific option.) It * is used when image is type Jpeg. * @returns A 3D Tensor of dtype `int32` with shape [height, width, 1/3]. * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function decodeJpeg(contents, channels, ratio, fancyUpscaling, tryRecoverTruncated, acceptableFraction, dctMethod) { if (channels === void 0) { channels = 0; } if (ratio === void 0) { ratio = 1; } if (fancyUpscaling === void 0) { fancyUpscaling = true; } if (tryRecoverTruncated === void 0) { tryRecoverTruncated = false; } if (acceptableFraction === void 0) { acceptableFraction = 1; } if (dctMethod === void 0) { dctMethod = ''; } (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); return (0, tfjs_1.tidy)(function () { return (0, nodejs_kernel_backend_1.nodeBackend)() .decodeJpeg(contents, channels, ratio, fancyUpscaling, tryRecoverTruncated, acceptableFraction, dctMethod) .toInt(); }); } exports.decodeJpeg = decodeJpeg; /** * Decode a PNG-encoded image to a 3D Tensor of dtype `int32`. * * @param contents The PNG-encoded image in an Uint8Array. * @param channels An optional int. Defaults to 0. Accepted values are * 0: use the number of channels in the PNG-encoded image. * 1: output a grayscale image. * 3: output an RGB image. * 4: output an RGBA image. * @param dtype The data type of the result. Only `int32` is supported at this * time. * @returns A 3D Tensor of dtype `int32` with shape [height, width, 1/3/4]. * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function decodePng(contents, channels, dtype) { if (channels === void 0) { channels = 0; } if (dtype === void 0) { dtype = 'int32'; } tfjs_1.util.assert(dtype === 'int32', function () { return 'decodeImage could only return Tensor of type `int32` for now.'; }); (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); return (0, tfjs_1.tidy)(function () { return (0, nodejs_kernel_backend_1.nodeBackend)().decodePng(contents, channels).toInt(); }); } exports.decodePng = decodePng; /** * Decode the first frame of a BMP-encoded image to a 3D Tensor of dtype * `int32`. * * @param contents The BMP-encoded image in an Uint8Array. * @param channels An optional int. Defaults to 0. Accepted values are * 0: use the number of channels in the BMP-encoded image. * 3: output an RGB image. * 4: output an RGBA image. * @returns A 3D Tensor of dtype `int32` with shape [height, width, 3/4]. * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function decodeBmp(contents, channels) { if (channels === void 0) { channels = 0; } (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); return (0, tfjs_1.tidy)(function () { return (0, nodejs_kernel_backend_1.nodeBackend)().decodeBmp(contents, channels).toInt(); }); } exports.decodeBmp = decodeBmp; /** * Decode the frame(s) of a GIF-encoded image to a 4D Tensor of dtype `int32`. * * @param contents The GIF-encoded image in an Uint8Array. * @returns A 4D Tensor of dtype `int32` with shape [num_frames, height, width, * 3]. RGB channel order. * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function decodeGif(contents) { (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); return (0, tfjs_1.tidy)(function () { return (0, nodejs_kernel_backend_1.nodeBackend)().decodeGif(contents).toInt(); }); } exports.decodeGif = decodeGif; /** * Given the encoded bytes of an image, it returns a 3D or 4D tensor of the * decoded image. Supports BMP, GIF, JPEG and PNG formats. * * @param content The encoded image in an Uint8Array. * @param channels An optional int. Defaults to 0, use the number of channels in * the image. Number of color channels for the decoded image. It is used * when image is type Png, Bmp, or Jpeg. * @param dtype The data type of the result. Only `int32` is supported at this * time. * @param expandAnimations A boolean which controls the shape of the returned * op's output. If True, the returned op will produce a 3-D tensor for PNG, * JPEG, and BMP files; and a 4-D tensor for all GIFs, whether animated or * not. If, False, the returned op will produce a 3-D tensor for all file * types and will truncate animated GIFs to the first frame. * @returns A Tensor with dtype `int32` and a 3- or 4-dimensional shape, * depending on the file type. For gif file the returned Tensor shape is * [num_frames, height, width, 3], and for jpeg/png/bmp the returned Tensor * shape is [height, width, channels] * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function decodeImage(content, channels, dtype, expandAnimations) { if (channels === void 0) { channels = 0; } if (dtype === void 0) { dtype = 'int32'; } if (expandAnimations === void 0) { expandAnimations = true; } tfjs_1.util.assert(dtype === 'int32', function () { return 'decodeImage could only return Tensor of type `int32` for now.'; }); var imageType = getImageType(content); // The return tensor has dtype uint8, which is not supported in // TensorFlow.js, casting it to int32 which is the default dtype for image // tensor. If the image is BMP, JPEG or PNG type, expanding the tensors // shape so it becomes Tensor4D, which is the default tensor shape for image // ([batch,imageHeight,imageWidth, depth]). switch (imageType) { case ImageType.JPEG: return decodeJpeg(content, channels); case ImageType.PNG: return decodePng(content, channels); case ImageType.GIF: // If not to expand animations, take first frame of the gif and return // as a 3D tensor. return (0, tfjs_1.tidy)(function () { var img = decodeGif(content); return expandAnimations ? img : img.slice(0, 1).squeeze([0]); }); case ImageType.BMP: return decodeBmp(content, channels); default: return null; } } exports.decodeImage = decodeImage; /** * Encodes an image tensor to JPEG. * * @param image A 3-D uint8 Tensor of shape [height, width, channels]. * @param format An optional string from: "", "grayscale", "rgb". * Defaults to "". Per pixel image format. * - '': Use a default format based on the number of channels in the image. * - grayscale: Output a grayscale JPEG image. The channels dimension of * image must be 1. * - rgb: Output an RGB JPEG image. The channels dimension of image must * be 3. * @param quality An optional int. Defaults to 95. Quality of the compression * from 0 to 100 (higher is better and slower). * @param progressive An optional bool. Defaults to False. If True, create a * JPEG that loads progressively (coarse to fine). * @param optimizeSize An optional bool. Defaults to False. If True, spend * CPU/RAM to reduce size with no quality change. * @param chromaDownsampling An optional bool. Defaults to True. * See http://en.wikipedia.org/wiki/Chroma_subsampling. * @param densityUnit An optional string from: "in", "cm". Defaults to "in". * Unit used to specify x_density and y_density: pixels per inch ('in') or * centimeter ('cm'). * @param xDensity An optional int. Defaults to 300. Horizontal pixels per * density unit. * @param yDensity An optional int. Defaults to 300. Vertical pixels per * density unit. * @param xmpMetadata An optional string. Defaults to "". If not empty, embed * this XMP metadata in the image header. * @returns The JPEG encoded data as an Uint8Array. * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function encodeJpeg(image, format, quality, progressive, optimizeSize, chromaDownsampling, densityUnit, xDensity, yDensity, xmpMetadata) { if (format === void 0) { format = ''; } if (quality === void 0) { quality = 95; } if (progressive === void 0) { progressive = false; } if (optimizeSize === void 0) { optimizeSize = false; } if (chromaDownsampling === void 0) { chromaDownsampling = true; } if (densityUnit === void 0) { densityUnit = 'in'; } if (xDensity === void 0) { xDensity = 300; } if (yDensity === void 0) { yDensity = 300; } if (xmpMetadata === void 0) { xmpMetadata = ''; } return __awaiter(this, void 0, void 0, function () { var backendEncodeImage; return __generator(this, function (_a) { (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); backendEncodeImage = function (imageData) { return (0, nodejs_kernel_backend_1.nodeBackend)().encodeJpeg(imageData, image.shape, format, quality, progressive, optimizeSize, chromaDownsampling, densityUnit, xDensity, yDensity, xmpMetadata); }; return [2 /*return*/, encodeImage(image, backendEncodeImage)]; }); }); } exports.encodeJpeg = encodeJpeg; /** * Encodes an image tensor to PNG. * * @param image A 3-D uint8 Tensor of shape [height, width, channels]. * @param compression An optional int. Defaults to 1. Compression level. * @returns The PNG encoded data as an Uint8Array. * * @doc {heading: 'Operations', subheading: 'Images', namespace: 'node'} */ function encodePng(image, compression) { if (compression === void 0) { compression = 1; } return __awaiter(this, void 0, void 0, function () { var backendEncodeImage; return __generator(this, function (_a) { (0, nodejs_kernel_backend_1.ensureTensorflowBackend)(); backendEncodeImage = function (imageData) { return (0, nodejs_kernel_backend_1.nodeBackend)().encodePng(imageData, image.shape, compression); }; return [2 /*return*/, encodeImage(image, backendEncodeImage)]; }); }); } exports.encodePng = encodePng; function encodeImage(image, backendEncodeImage) { return __awaiter(this, void 0, void 0, function () { var encodedDataTensor, _a, _b, encodedPngData; return __generator(this, function (_c) { switch (_c.label) { case 0: _a = backendEncodeImage; _b = Uint8Array.bind; return [4 /*yield*/, image.data()]; case 1: encodedDataTensor = _a.apply(void 0, [new (_b.apply(Uint8Array, [void 0, _c.sent()]))()]); // tslint:disable-next-line:no-any return [4 /*yield*/, encodedDataTensor.data()]; case 2: encodedPngData = ( // tslint:disable-next-line:no-any _c.sent())[0]; encodedDataTensor.dispose(); return [2 /*return*/, encodedPngData]; } }); }); } /** * Helper function to get image type based on starting bytes of the image file. */ function getImageType(content) { // Classify the contents of a file based on starting bytes (aka magic number: // https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files) // This aligns with TensorFlow Core code: // https://github.com/tensorflow/tensorflow/blob/4213d5c1bd921f8d5b7b2dc4bbf1eea78d0b5258/tensorflow/core/kernels/decode_image_op.cc#L44 if (content.length > 3 && content[0] === 255 && content[1] === 216 && content[2] === 255) { // JPEG byte chunk starts with `ff d8 ff` return ImageType.JPEG; } else if (content.length > 4 && content[0] === 71 && content[1] === 73 && content[2] === 70 && content[3] === 56) { // GIF byte chunk starts with `47 49 46 38` return ImageType.GIF; } else if (content.length > 8 && content[0] === 137 && content[1] === 80 && content[2] === 78 && content[3] === 71 && content[4] === 13 && content[5] === 10 && content[6] === 26 && content[7] === 10) { // PNG byte chunk starts with `\211 P N G \r \n \032 \n (89 50 4E 47 0D 0A // 1A 0A)` return ImageType.PNG; } else if (content.length > 3 && content[0] === 66 && content[1] === 77) { // BMP byte chunk starts with `42 4d` return ImageType.BMP; } else { throw new Error('Expected image (BMP, JPEG, PNG, or GIF), but got unsupported ' + 'image type'); } } exports.getImageType = getImageType;