UNPKG

@tensorflow/tfjs-node

Version:

This repository provides native TensorFlow execution in backend JavaScript applications under the Node.js runtime, accelerated by the TensorFlow C binary under the hood. It provides the same API as [TensorFlow.js](https://js.tensorflow.org/api/latest/).

392 lines (391 loc) 22.7 kB
"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("@tensorflow/tfjs"); var callbacks_1 = require("./callbacks"); describe('progbarLogger', function () { // Fake progbar class written for testing. var FakeProgbar = /** @class */ (function () { function FakeProgbar(specs, config) { this.specs = specs; this.config = config; this.tickConfigs = []; } FakeProgbar.prototype.tick = function (tickConfig) { this.tickConfigs.push(tickConfig); }; return FakeProgbar; }()); var originalStderrColumns; beforeEach(function () { // In some CI environments, process.stderr.columns has a null value. originalStderrColumns = process.stderr.columns; process.stderr.columns = 100; }); afterEach(function () { process.stderr.columns = originalStderrColumns; }); it('Model.fit with loss, no metric, no validation, verobse = 1', function () { return __awaiter(void 0, void 0, void 0, function () { var fakeProgbars, consoleMessages, model, numSamples, epochs, batchSize, xs, ys, _i, fakeProgbars_1, fakeProgbar, tickConfigs, i; return __generator(this, function (_a) { switch (_a.label) { case 0: fakeProgbars = []; spyOn(callbacks_1.progressBarHelper, 'ProgressBar') .and.callFake(function (specs, config) { var fakeProgbar = new FakeProgbar(specs, config); fakeProgbars.push(fakeProgbar); return fakeProgbar; }); consoleMessages = []; spyOn(callbacks_1.progressBarHelper, 'log').and.callFake(function (message) { consoleMessages.push(message); }); model = tf.sequential(); model.add(tf.layers.dense({ units: 10, inputShape: [8], activation: 'relu' })); model.add(tf.layers.dense({ units: 1 })); model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' }); numSamples = 14; epochs = 3; batchSize = 8; xs = tf.randomNormal([numSamples, 8]); ys = tf.randomNormal([numSamples, 1]); return [4 /*yield*/, model.fit(xs, ys, { epochs: epochs, batchSize: batchSize, verbose: 1 })]; case 1: _a.sent(); // A progbar object is created for each epoch. expect(fakeProgbars.length).toEqual(3); for (_i = 0, fakeProgbars_1 = fakeProgbars; _i < fakeProgbars_1.length; _i++) { fakeProgbar = fakeProgbars_1[_i]; tickConfigs = fakeProgbar.tickConfigs; // There are ceil(14 / 8) = 2 batchs per epoch. There should be 1 tick // for epoch batch, plus a tick at the end of the epoch. expect(tickConfigs.length).toEqual(3); for (i = 0; i < 2; ++i) { expect(Object.keys(tickConfigs[i])).toEqual([ 'placeholderForLossesAndMetrics' ]); expect(tickConfigs[i]['placeholderForLossesAndMetrics']) .toMatch(/^loss=.*/); } expect(tickConfigs[2]).toEqual({ placeholderForLossesAndMetrics: '' }); } expect(consoleMessages.length).toEqual(6); expect(consoleMessages[0]).toEqual('Epoch 1 / 3'); expect(consoleMessages[1]).toMatch(/.*ms .*us\/step - loss=.*/); expect(consoleMessages[2]).toEqual('Epoch 2 / 3'); expect(consoleMessages[3]).toMatch(/.*ms .*us\/step - loss=.*/); expect(consoleMessages[4]).toEqual('Epoch 3 / 3'); expect(consoleMessages[5]).toMatch(/.*ms .*us\/step - loss=.*/); return [2 /*return*/]; } }); }); }); it('Model.fit with loss, metric and validation, verbose = 2', function () { return __awaiter(void 0, void 0, void 0, function () { var fakeProgbars, consoleMessages, model, numSamples, epochs, batchSize, validationSplit, xs, ys, _i, fakeProgbars_2, fakeProgbar, tickConfigs, i; return __generator(this, function (_a) { switch (_a.label) { case 0: fakeProgbars = []; spyOn(callbacks_1.progressBarHelper, 'ProgressBar') .and.callFake(function (specs, config) { var fakeProgbar = new FakeProgbar(specs, config); fakeProgbars.push(fakeProgbar); return fakeProgbar; }); consoleMessages = []; spyOn(callbacks_1.progressBarHelper, 'log').and.callFake(function (message) { consoleMessages.push(message); }); model = tf.sequential(); model.add(tf.layers.dense({ units: 10, inputShape: [8], activation: 'relu' })); model.add(tf.layers.dense({ units: 1 })); model.compile({ loss: 'meanSquaredError', optimizer: 'sgd', metrics: ['acc'] }); numSamples = 40; epochs = 2; batchSize = 8; validationSplit = 0.15; xs = tf.randomNormal([numSamples, 8]); ys = tf.randomNormal([numSamples, 1]); return [4 /*yield*/, model.fit(xs, ys, { epochs: epochs, batchSize: batchSize, validationSplit: validationSplit, verbose: 2 })]; case 1: _a.sent(); // A progbar object is created for each epoch. expect(fakeProgbars.length).toEqual(2); for (_i = 0, fakeProgbars_2 = fakeProgbars; _i < fakeProgbars_2.length; _i++) { fakeProgbar = fakeProgbars_2[_i]; tickConfigs = fakeProgbar.tickConfigs; // There are 5 batchs per epoch. There should be 1 tick for epoch batch, // plus a tick at the end of the epoch. expect(tickConfigs.length).toEqual(6); for (i = 0; i < 5; ++i) { expect(Object.keys(tickConfigs[i])).toEqual([ 'placeholderForLossesAndMetrics' ]); expect(tickConfigs[i]['placeholderForLossesAndMetrics']) .toMatch(/^acc=.* loss=.*/); } expect(tickConfigs[5]).toEqual({ placeholderForLossesAndMetrics: '' }); } expect(consoleMessages.length).toEqual(4); expect(consoleMessages[0]).toEqual('Epoch 1 / 2'); expect(consoleMessages[1]) .toMatch(/.*ms .*us\/step - acc=.* loss=.* val_acc=.* val_loss=.*/); expect(consoleMessages[2]).toEqual('Epoch 2 / 2'); expect(consoleMessages[3]) .toMatch(/.*ms .*us\/step - acc=.* loss=.* val_acc=.* val_loss=.*/); return [2 /*return*/]; } }); }); }); it('Model.fit does not create ProgbarLogger if verbose is 0', function () { return __awaiter(void 0, void 0, void 0, function () { var fakeProgbars, consoleMessages, model, numSamples, epochs, batchSize, validationSplit, xs, ys; return __generator(this, function (_a) { switch (_a.label) { case 0: fakeProgbars = []; spyOn(callbacks_1.progressBarHelper, 'ProgressBar') .and.callFake(function (specs, config) { var fakeProgbar = new FakeProgbar(specs, config); fakeProgbars.push(fakeProgbar); return fakeProgbar; }); consoleMessages = []; spyOn(callbacks_1.progressBarHelper, 'log').and.callFake(function (message) { consoleMessages.push(message); }); model = tf.sequential(); model.add(tf.layers.dense({ units: 10, inputShape: [8], activation: 'relu' })); model.add(tf.layers.dense({ units: 1 })); model.compile({ loss: 'meanSquaredError', optimizer: 'sgd', metrics: ['acc'] }); numSamples = 40; epochs = 2; batchSize = 8; validationSplit = 0.15; xs = tf.randomNormal([numSamples, 8]); ys = tf.randomNormal([numSamples, 1]); return [4 /*yield*/, model.fit(xs, ys, { epochs: epochs, batchSize: batchSize, validationSplit: validationSplit, verbose: 0 })]; case 1: _a.sent(); expect(fakeProgbars.length).toEqual(0); return [2 /*return*/]; } }); }); }); it('Model.fitDataset: batchesPerEpoch specified, verbose = 1', function () { return __awaiter(void 0, void 0, void 0, function () { var fakeProgbars, consoleMessages, epochs, xDataset, yDataset, dataset, model; return __generator(this, function (_a) { switch (_a.label) { case 0: fakeProgbars = []; spyOn(callbacks_1.progressBarHelper, 'ProgressBar') .and.callFake(function (specs, config) { var fakeProgbar = new FakeProgbar(specs, config); fakeProgbars.push(fakeProgbar); return fakeProgbar; }); consoleMessages = []; spyOn(callbacks_1.progressBarHelper, 'log').and.callFake(function (message) { consoleMessages.push(message); }); epochs = 2; xDataset = tf.data.array([[1, 2], [3, 4], [5, 6], [7, 8]]) .map(function (x) { return tf.tensor2d(x, [1, 2]); }); yDataset = tf.data.array([[1], [2], [3], [4]]).map(function (y) { return tf.tensor2d(y, [1, 1]); }); dataset = tf.data.zip({ xs: xDataset, ys: yDataset }).repeat(epochs); model = tf.sequential(); model.add(tf.layers.dense({ units: 1, inputShape: [2] })); model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' }); return [4 /*yield*/, model.fitDataset(dataset, { batchesPerEpoch: 4, epochs: epochs, verbose: 1 })]; case 1: _a.sent(); expect(consoleMessages.length).toEqual(4); expect(consoleMessages[0]).toEqual('Epoch 1 / 2'); expect(consoleMessages[1]).toMatch(/.*ms .*us\/step - loss=.*/); expect(consoleMessages[2]).toEqual('Epoch 2 / 2'); expect(consoleMessages[3]).toMatch(/.*ms .*us\/step - loss=.*/); return [2 /*return*/]; } }); }); }); it('Model.fitDataset: batchesPerEpoch unavailable, verbose = 1', function () { return __awaiter(void 0, void 0, void 0, function () { var fakeProgbars, consoleMessages, epochs, xDataset, yDataset, dataset, model; return __generator(this, function (_a) { switch (_a.label) { case 0: fakeProgbars = []; spyOn(callbacks_1.progressBarHelper, 'ProgressBar') .and.callFake(function (specs, config) { var fakeProgbar = new FakeProgbar(specs, config); fakeProgbars.push(fakeProgbar); return fakeProgbar; }); consoleMessages = []; spyOn(callbacks_1.progressBarHelper, 'log').and.callFake(function (message) { consoleMessages.push(message); }); epochs = 2; xDataset = tf.data.array([[1, 2], [3, 4], [5, 6], [7, 8]]) .map(function (x) { return tf.tensor2d(x, [1, 2]); }); yDataset = tf.data.array([[1], [2], [3], [4]]).map(function (y) { return tf.tensor2d(y, [1, 1]); }); dataset = tf.data.zip({ xs: xDataset, ys: yDataset }).repeat(epochs); model = tf.sequential(); model.add(tf.layers.dense({ units: 1, inputShape: [2] })); model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' }); // `batchesPerEpoch` is not specified. Instead, `fitDataset()` relies on // the `done` field being `true` to terminate the epoch(s). return [4 /*yield*/, model.fitDataset(dataset, { epochs: epochs, verbose: 1 })]; case 1: // `batchesPerEpoch` is not specified. Instead, `fitDataset()` relies on // the `done` field being `true` to terminate the epoch(s). _a.sent(); expect(consoleMessages.length).toEqual(4); expect(consoleMessages[0]).toEqual('Epoch 1 / 2'); expect(consoleMessages[1]).toMatch(/.*ms .*us\/step - loss=.*/); expect(consoleMessages[2]).toEqual('Epoch 2 / 2'); expect(consoleMessages[3]).toMatch(/.*ms .*us\/step - loss=.*/); return [2 /*return*/]; } }); }); }); it('Model.fitDataset: verbose = 0 leads to no logging', function () { return __awaiter(void 0, void 0, void 0, function () { var fakeProgbars, consoleMessages, xDataset, yDataset, dataset, model, history; return __generator(this, function (_a) { switch (_a.label) { case 0: fakeProgbars = []; spyOn(callbacks_1.progressBarHelper, 'ProgressBar') .and.callFake(function (specs, config) { var fakeProgbar = new FakeProgbar(specs, config); fakeProgbars.push(fakeProgbar); return fakeProgbar; }); consoleMessages = []; spyOn(callbacks_1.progressBarHelper, 'log').and.callFake(function (message) { consoleMessages.push(message); }); xDataset = tf.data.array([[1, 2], [3, 4], [5, 6], [7, 8]]) .map(function (x) { return tf.tensor2d(x, [1, 2]); }); yDataset = tf.data.array([[1], [2], [3], [4]]).map(function (y) { return tf.tensor2d(y, [1, 1]); }); dataset = tf.data.zip({ xs: xDataset, ys: yDataset }); model = tf.sequential(); model.add(tf.layers.dense({ units: 1, inputShape: [2] })); model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' }); return [4 /*yield*/, model.fitDataset(dataset, { epochs: 1, verbose: 0 })]; case 1: history = _a.sent(); expect(history.history.loss.length).toEqual(1); expect(consoleMessages.length) .toEqual(0); // No logging should have happened. return [2 /*return*/]; } }); }); }); }); describe('getSuccinctNumberDisplay', function () { it('Not finite', function () { expect((0, callbacks_1.getSuccinctNumberDisplay)(Infinity)).toEqual('Infinity'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-Infinity)).toEqual('-Infinity'); expect((0, callbacks_1.getSuccinctNumberDisplay)(NaN)).toEqual('NaN'); }); it('zero', function () { expect((0, callbacks_1.getSuccinctNumberDisplay)(0)).toEqual('0.00'); }); it('Finite and positive', function () { expect((0, callbacks_1.getSuccinctNumberDisplay)(300)).toEqual('300.00'); expect((0, callbacks_1.getSuccinctNumberDisplay)(30)).toEqual('30.00'); expect((0, callbacks_1.getSuccinctNumberDisplay)(1)).toEqual('1.00'); expect((0, callbacks_1.getSuccinctNumberDisplay)(1e-2)).toEqual('0.0100'); expect((0, callbacks_1.getSuccinctNumberDisplay)(1e-3)).toEqual('1.00e-3'); expect((0, callbacks_1.getSuccinctNumberDisplay)(4e-3)).toEqual('4.00e-3'); expect((0, callbacks_1.getSuccinctNumberDisplay)(1e-6)).toEqual('1.00e-6'); }); it('Finite and negative', function () { expect((0, callbacks_1.getSuccinctNumberDisplay)(-300)).toEqual('-300.00'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-30)).toEqual('-30.00'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-1)).toEqual('-1.00'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-1e-2)).toEqual('-0.0100'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-1e-3)).toEqual('-1.00e-3'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-4e-3)).toEqual('-4.00e-3'); expect((0, callbacks_1.getSuccinctNumberDisplay)(-1e-6)).toEqual('-1.00e-6'); }); }); describe('getDisplayDecimalPlaces', function () { it('Not finite', function () { expect((0, callbacks_1.getDisplayDecimalPlaces)(Infinity)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(-Infinity)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(NaN)).toEqual(2); }); it('zero', function () { expect((0, callbacks_1.getDisplayDecimalPlaces)(0)).toEqual(2); }); it('Finite and positive', function () { expect((0, callbacks_1.getDisplayDecimalPlaces)(300)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(30)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(1)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(1e-2)).toEqual(4); expect((0, callbacks_1.getDisplayDecimalPlaces)(1e-3)).toEqual(5); expect((0, callbacks_1.getDisplayDecimalPlaces)(4e-3)).toEqual(5); expect((0, callbacks_1.getDisplayDecimalPlaces)(1e-6)).toEqual(8); }); it('Finite and negative', function () { expect((0, callbacks_1.getDisplayDecimalPlaces)(-300)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(-30)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(-1)).toEqual(2); expect((0, callbacks_1.getDisplayDecimalPlaces)(-1e-2)).toEqual(4); expect((0, callbacks_1.getDisplayDecimalPlaces)(-1e-3)).toEqual(5); expect((0, callbacks_1.getDisplayDecimalPlaces)(-4e-3)).toEqual(5); expect((0, callbacks_1.getDisplayDecimalPlaces)(-1e-6)).toEqual(8); }); });