UNPKG

@tensorflow/tfjs-layers

Version:

TensorFlow layers API in JavaScript

55 lines (54 loc) 2.21 kB
/** * @license * Copyright 2023 CodeSmith LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /// <amd-module name="@tensorflow/tfjs-layers/dist/layers/preprocessing/random_width" /> import { Rank, serialization, Tensor } from '@tensorflow/tfjs-core'; import { Shape } from '../../keras_format/common'; import { Kwargs } from '../../types'; import { BaseRandomLayerArgs, BaseRandomLayer } from '../../engine/base_random_layer'; export declare interface RandomWidthArgs extends BaseRandomLayerArgs { factor: number | [number, number]; interpolation?: InterpolationType; seed?: number; autoVectorize?: boolean; } declare const INTERPOLATION_KEYS: readonly ["bilinear", "nearest"]; export declare const INTERPOLATION_METHODS: Set<"nearest" | "bilinear">; type InterpolationType = typeof INTERPOLATION_KEYS[number]; /** * Preprocessing Layer with randomly varies image during training * * This layer randomly adjusts the width of a batch of images of a * batch of images by a random factor. * * The input should be a 3D (unbatched) or * 4D (batched) tensor in the `"channels_last"` image data format. Input pixel * values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and of integer * or floating point dtype. By default, the layer will output floats. * * tf methods implemented in tfjs: 'bilinear', 'nearest', * tf methods unimplemented in tfjs: 'bicubic', 'area', 'lanczos3', 'lanczos5', * 'gaussian', 'mitchellcubic' * */ export declare class RandomWidth extends BaseRandomLayer { /** @nocollapse */ static className: string; private readonly factor; private readonly interpolation?; private widthLower; private widthUpper; private imgHeight; private widthFactor; constructor(args: RandomWidthArgs); getConfig(): serialization.ConfigDict; computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[]; call(inputs: Tensor<Rank.R3> | Tensor<Rank.R4>, kwargs: Kwargs): Tensor[] | Tensor; } export {};