UNPKG

@tensorflow/tfjs-layers

Version:

TensorFlow layers API in JavaScript

76 lines (75 loc) 3.25 kB
/** * @license * Copyright 2023 Google LLC. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /// <amd-module name="@tensorflow/tfjs-layers/dist/layers/nlp/utils" /> import { ModelPredictConfig, Scalar, Tensor } from '@tensorflow/tfjs-core'; import { History } from '../../base_callbacks'; import { ContainerArgs } from '../../engine/container'; import { LayersModel, ModelEvaluateArgs } from '../../engine/training'; import { ModelFitArgs } from '../../engine/training_tensors'; export declare function tensorToArr(input: Tensor): unknown[]; export declare function tensorArrTo2DArr(inputs: Tensor[]): unknown[][]; /** * Returns a new Tensor with `updates` inserted into `inputs` starting at the * index `startIndices`. * * @param inputs Tensor to "modify" * @param startIndices the starting index to insert the slice. * Length must be equal to `inputs.rank`; * @param updates the update tensor. Shape must fit within `inputs` shape. * @returns a new tensor with the modification. */ export declare function sliceUpdate(inputs: Tensor, startIndices: number[], updates: Tensor): Tensor; /** * A model which allows automatically applying preprocessing. */ export interface PipelineModelArgs extends ContainerArgs { /** * Defaults to true. */ includePreprocessing?: boolean; } export declare class PipelineModel extends LayersModel { /** @nocollapse */ static className: string; protected includePreprocessing: boolean; constructor(args: PipelineModelArgs); /** * An overridable function which preprocesses features. */ preprocessFeatures(x: Tensor): Tensor<import("@tensorflow/tfjs-core").Rank>; /** * An overridable function which preprocesses labels. */ preprocessLabels(y: Tensor): Tensor<import("@tensorflow/tfjs-core").Rank>; /** * An overridable function which preprocesses entire samples. */ preprocessSamples(x: Tensor, y?: Tensor, sampleWeight?: Tensor): Tensor | [Tensor, Tensor] | [Tensor, Tensor, Tensor]; fit(x: Tensor | Tensor[] | { [inputName: string]: Tensor; }, y: Tensor | Tensor[] | { [inputName: string]: Tensor; }, args?: ModelFitArgs): Promise<History>; evaluate(x: Tensor | Tensor[], y: Tensor | Tensor[], args?: ModelEvaluateArgs): Scalar | Scalar[]; predict(x: Tensor | Tensor[], args?: ModelPredictConfig): Tensor | Tensor[]; trainOnBatch(x: Tensor | Tensor[] | { [inputName: string]: Tensor; }, y: Tensor | Tensor[] | { [inputName: string]: Tensor; }, sampleWeight?: Tensor): Promise<number | number[]>; predictOnBatch(x: Tensor | Tensor[]): Tensor | Tensor[]; }