@tensorflow/tfjs-layers
Version:
TensorFlow layers API in JavaScript
89 lines (88 loc) • 3.12 kB
TypeScript
/**
* @license
* Copyright 2023 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-layers/dist/layers/nlp/modeling/position_embedding" />
/**
* Position embedding implementation based on `tf.layers.Layer`.
*/
import { Tensor, serialization } from '@tensorflow/tfjs-core';
import { Shape } from '../../../keras_format/common';
import { Layer, LayerArgs } from '../../../engine/topology';
import { Initializer, InitializerIdentifier } from '../../../initializers';
import { LayerVariable } from '../../../variables';
export declare interface PositionEmbeddingArgs extends LayerArgs {
/**
* Integer. The maximum length of the dynamic sequence.
*/
sequenceLength: number;
/**
* The initializer to use for the embedding weights.
* Defaults to `"glorotUniform"`.
*/
initializer?: Initializer | InitializerIdentifier;
}
export declare interface PositionEmbeddingOptions {
/**
* Integer. Index to start the position embeddings at.
* Defaults to 0.
*/
startIndex?: number;
}
/**
* A layer which learns a position embedding for input sequences.
*
* This class assumes that in the input tensor, the last dimension corresponds
* to the features, and the dimension before the last corresponds to the
* sequence.
*
* Examples:
*
* Called directly on input.
* ```js
* const layer = new PositionEmbedding({sequenceLength=10});
* layer.call(tf.zeros([8, 10, 16]));
* ```
*
* Combine with a token embedding.
* ```js
* const seqLength = 50;
* const vocabSize = 5000;
* const embedDim = 128;
* const inputs = tf.input({shape: [seqLength]});
* const tokenEmbeddings = tf.layers.embedding({
* inputDim=vocabSize, outputDim=embedDim
* }).apply(inputs);
* const positionEmbeddings = new PositionEmbedding({
* sequenceLength: seqLength
* }).apply(tokenEmbeddings);
* const outputs = tf.add(tokenEmbeddings, positionEmbeddings);
* ```
*
* Reference:
* - [Devlin et al., 2019](https://arxiv.org/abs/1810.04805)
*/
export declare class PositionEmbedding extends Layer {
/** @nocollapse */
static readonly className = "PositionEmbedding";
private sequenceLength;
private initializer;
protected positionEmbeddings: LayerVariable;
constructor(args: PositionEmbeddingArgs);
getConfig(): serialization.ConfigDict;
build(inputShape: Shape): void;
call(inputs: Tensor | Tensor[], kwargs?: PositionEmbeddingOptions): Tensor;
computeOutputShape(inputShape: Shape): Shape;
}