UNPKG

@tensorflow/tfjs-layers

Version:

TensorFlow layers API in JavaScript

139 lines (138 loc) 4.96 kB
/** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /// <amd-module name="@tensorflow/tfjs-layers/dist/layers/advanced_activations" /> /** * Advanced activation layers. */ import { serialization, Tensor } from '@tensorflow/tfjs-core'; import { Constraint } from '../constraints'; import { Layer, LayerArgs } from '../engine/topology'; import { Initializer, InitializerIdentifier } from '../initializers'; import { Shape } from '../keras_format/common'; import { Regularizer } from '../regularizers'; import { Kwargs } from '../types'; export declare interface ReLULayerArgs extends LayerArgs { /** * Float, the maximum output value. */ maxValue?: number; } export declare class ReLU extends Layer { /** @nocollapse */ static className: string; maxValue: number; constructor(args?: ReLULayerArgs); call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[]; computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[]; getConfig(): serialization.ConfigDict; } export declare interface LeakyReLULayerArgs extends LayerArgs { /** * Float `>= 0`. Negative slope coefficient. Defaults to `0.3`. */ alpha?: number; } export declare class LeakyReLU extends Layer { /** @nocollapse */ static className: string; readonly alpha: number; readonly DEFAULT_ALPHA = 0.3; constructor(args?: LeakyReLULayerArgs); call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[]; computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[]; getConfig(): serialization.ConfigDict; } export declare interface PReLULayerArgs extends LayerArgs { /** * Initializer for the learnable alpha. */ alphaInitializer?: Initializer | InitializerIdentifier; /** * Regularizer for the learnable alpha. */ alphaRegularizer?: Regularizer; /** * Constraint for the learnable alpha. */ alphaConstraint?: Constraint; /** * The axes along which to share learnable parameters for the activation * function. For example, if the incoming feature maps are from a 2D * convolution with output shape `[numExamples, height, width, channels]`, * and you wish to share parameters across space (height and width) so that * each filter channels has only one set of parameters, set * `shared_axes: [1, 2]`. */ sharedAxes?: number | number[]; } export declare class PReLU extends Layer { /** @nocollapse */ static className: string; private readonly alphaInitializer; private readonly alphaRegularizer; private readonly alphaConstraint; private readonly sharedAxes; private alpha; readonly DEFAULT_ALPHA_INITIALIZER: InitializerIdentifier; constructor(args?: PReLULayerArgs); build(inputShape: Shape | Shape[]): void; call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[]; getConfig(): serialization.ConfigDict; } export declare interface ELULayerArgs extends LayerArgs { /** * Float `>= 0`. Negative slope coefficient. Defaults to `1.0`. */ alpha?: number; } export declare class ELU extends Layer { /** @nocollapse */ static className: string; readonly alpha: number; readonly DEFAULT_ALPHA = 1; constructor(args?: ELULayerArgs); call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[]; computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[]; getConfig(): serialization.ConfigDict; } export declare interface ThresholdedReLULayerArgs extends LayerArgs { /** * Float >= 0. Threshold location of activation. */ theta?: number; } export declare class ThresholdedReLU extends Layer { /** @nocollapse */ static className: string; readonly theta: number; readonly DEFAULT_THETA = 1; constructor(args?: ThresholdedReLULayerArgs); call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[]; computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[]; getConfig(): serialization.ConfigDict; } export declare interface SoftmaxLayerArgs extends LayerArgs { /** * Integer, axis along which the softmax normalization is applied. * Defaults to `-1` (i.e., the last axis). */ axis?: number | number[]; } export declare class Softmax extends Layer { /** @nocollapse */ static className: string; readonly axis: number | number[]; readonly softmax: (t: Tensor, a?: number) => Tensor; readonly DEFAULT_AXIS = 1; constructor(args?: SoftmaxLayerArgs); call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[]; computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[]; getConfig(): serialization.ConfigDict; }