UNPKG

@tensorflow/tfjs-layers

Version:

TensorFlow layers API in JavaScript

351 lines 65 kB
/** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * Interfaces and methods for training models using TensorFlow.js datasets. */ import * as tfc from '@tensorflow/tfjs-core'; import { scalar } from '@tensorflow/tfjs-core'; import { configureCallbacks, standardizeCallbacks } from '../base_callbacks'; import { NotImplementedError, ValueError } from '../errors'; import { disposeTensorsInLogs } from '../logs'; import { singletonOrArray, toList } from '../utils/generic_utils'; import { standardizeClassWeights, standardizeWeights } from './training_utils'; // Default batch size used during tensor-based validation. const DEFAULT_VALIDATION_BATCH_SIZE = 32; /** * Standardize the output of a dataset iterator for use by * LayersModel.fitDataset(). * * @param model: A `tf.LayersModel` object. * @param iteratorOut The output of a dataset iterator. It is required to be * an object of the form `{xs: TensorOrArrayOrMap, ys: * TensorOrArrayOrMap}`, where `TensorOrArrayOrMap` is a single `tf.Tensor`, * a `tf.Tensor[]`, or a flat map from string names to `tf.Tensor`s. * @returns A flat array of `tf.Tensor` objects: the input `tf.Tensor`s * followed by the target `tf.Tensor`s. When `tf.Tensor`s are provided * as a map, the order in the resulting array is taken from the `inputNames` * and `outputNames` of the model. */ function standardizeDataIteratorOutput( // Type `model` as `any` here to avoid circular dependency w/ // training.ts. // tslint:disable-next-line:no-any model, iteratorOut) { let xs; let ys; const iteratorOutObj = iteratorOut; xs = iteratorOutObj['xs']; ys = iteratorOutObj['ys']; tfc.util.assert(xs != null && ys != null, () => 'A Dataset iterator for fitDataset() is expected to generate ' + 'objects of the form `{xs: xVal, ys: yVal}`, where the two ' + 'values may be `tf.Tensor`, an array of Tensors, or a map of ' + 'string to Tensor. The provided Dataset instead generates ' + `${iteratorOut}`); const flattenedXs = flattenTensorOrArrayOrMap('input', model.inputNames, xs); const flattenedYs = flattenTensorOrArrayOrMap('output', model.outputNames, ys); const batchSize = flattenedXs[0].shape[0]; tfc.util.assert(flattenedXs.length === model.inputs.length, () => `LayersModel has ${model.inputs.length} inputs, but the dataset ` + `provides ${flattenedXs.length} inputs. (Expected input keys: ` + `${JSON.stringify(model.inputNames)})`); tfc.util.assert(flattenedYs.length === model.outputs.length, () => `LayersModel has ${model.outputs.length} outputs, but the dataset ` + `provides ${flattenedYs.length} outputs. (Expected output keys: ` + `${JSON.stringify(model.outputNames)})`); for (let xIndex = 0; xIndex < flattenedXs.length; xIndex++) { tfc.util.assert(flattenedXs[xIndex].shape[0] === batchSize, () => `Batch size mismatch: input ` + `${model.inputNames[xIndex]} has ${flattenedXs[xIndex].shape[0]}; ` + `expected ${batchSize} based on input ${model.inputNames[0]}.`); } for (let yIndex = 0; yIndex < flattenedYs.length; yIndex++) { tfc.util.assert(flattenedYs[yIndex].shape[0] === batchSize, () => `Batch size mismatch: output ` + `${model.outputNames[yIndex]} has ${flattenedYs[yIndex].shape[0]}; ` + `expected ${batchSize} based on input ${model.inputNames[0]}.`); } return { xs: flattenedXs, ys: flattenedYs }; } function flattenTensorOrArrayOrMap(inputOrOutput, names, values) { if (values instanceof tfc.Tensor) { return [values]; } else if (Array.isArray(values)) { tfc.util.assert(values.length === names.length, () => `Received an array of ${values.length} Tensors, but expected ${names.length} to match the ${inputOrOutput} keys ${names}.`); return values; } else { const result = []; // Check that all the required keys are available. for (const name of names) { if (values[name] == null) { throw new ValueError(`The feature data generated by the dataset lacks the required ` + `${inputOrOutput} key '${name}'.`); } result.push(values[name]); } return result; } } function standardizeTensorValidationData(data) { if (data.length === 3) { throw new NotImplementedError('Validation with sample weights is not implemented yet.'); } return { xs: data[0], ys: data[1] }; } export async function fitDataset( // Type `model` as `any` here to avoid circular dependency w/ // training.ts. // tslint:disable-next-line:no-any model, dataset, args) { const hasBatchesPerEpoch = args.batchesPerEpoch != null; tfc.util.assert(model.optimizer != null, () => 'You must compile a model before training/testing. Use ' + 'LayersModel.compile(modelCompileConfig).'); tfc.util.assert(args != null, () => `For fitDataset(), the 2nd argument (config) is required, ` + `but it is not provided in this call.`); tfc.util.assert(args.epochs != null && args.epochs > 0 && Number.isInteger(args.epochs), () => `For fitDataset(), config.epochs is expected to be a positive ` + `integer, but got ${args.epochs}`); tfc.util.assert(!hasBatchesPerEpoch || (args.batchesPerEpoch > 0 && Number.isInteger(args.batchesPerEpoch)), () => `For fitDataset(), config.batchesPerEpoch is expected to be a ` + `positive integer if specified, but got ${args.batchesPerEpoch}`); tfc.util.assert( // tslint:disable-next-line:no-any args['validationSplit'] == null, () => '`validationSplit` is not supported by `fitDataset()`. ' + 'Use validationData instead.'); if (model.isTraining) { throw new Error('Cannot start training because another fit() call is ongoing.'); } model.isTraining = true; try { const doValidation = args.validationData != null; let valXs; let valYs; if (doValidation) { if (isDatasetObject(args.validationData)) { tfc.util.assert(args.validationBatches == null || (args.validationBatches > 0 && Number.isInteger(args.validationBatches)), () => `For fitDataset() with dataset-based validation, ` + `config.validationBatches is expected not to be provided, ` + `or to be a positive integer, ` + `but got ${args.validationBatches}`); } else { const validationData = standardizeTensorValidationData(args.validationData); valXs = validationData.xs; valYs = validationData.ys; } } const trainFunction = model.makeTrainFunction(); const outLabels = model.getDedupedMetricsNames(); let callbackMetrics; if (doValidation) { callbackMetrics = outLabels.slice().concat(outLabels.map(n => 'val_' + n)); } else { callbackMetrics = outLabels.slice(); } const callbacks = standardizeCallbacks(args.callbacks, args.yieldEvery); const verbose = args.verbose == null ? 1 : args.verbose; const { callbackList, history } = configureCallbacks(callbacks, verbose, args.epochs, null, null, getStepsPerEpoch(dataset, args), null, // Batch size determined by the dataset itself. doValidation, callbackMetrics); callbackList.setModel(model); model.history = history; await callbackList.onTrainBegin(); model.stopTraining_ = false; let epoch = args.initialEpoch == null ? 0 : args.initialEpoch; let dataIterator = await dataset.iterator(); while (epoch < args.epochs) { const epochLogs = {}; await callbackList.onEpochBegin(epoch); let stepsDone = 0; let batchIndex = 0; if (!hasBatchesPerEpoch) { dataIterator = await dataset.iterator(); } while (hasBatchesPerEpoch ? stepsDone < args.batchesPerEpoch : true) { const iteratorOut = await dataIterator.next(); // If `batchesPerEpoch` is specified, the dataset should not be // exhausted until all epoches are done. if (hasBatchesPerEpoch && iteratorOut.done) { console.warn('You provided `batchesPerEpoch` as ' + `${args.batchesPerEpoch}, ` + 'but your dataset iterator ran out of data after ' + `${stepsDone} batches; ` + 'interrupting training. Make sure that your ' + 'dataset can generate at least `batchesPerEpoch * epochs` ' + 'batches (in this case, ' + `${args.batchesPerEpoch * args.epochs} batches). ` + 'You may need to use the repeat() function when building ' + 'your dataset.'); break; } if (iteratorOut.value != null) { const { xs, ys } = standardizeDataIteratorOutput(model, iteratorOut.value); const batchLogs = {}; batchLogs['batch'] = batchIndex; batchLogs['size'] = xs[0].shape[0]; await callbackList.onBatchBegin(batchIndex, batchLogs); const sampleWeights = []; if (args.classWeight != null) { const standardClassWeights = standardizeClassWeights(args.classWeight, model.outputNames); for (let i = 0; i < standardClassWeights.length; ++i) { sampleWeights.push(await standardizeWeights(ys[i], null, standardClassWeights[i])); } } // Train on batch. const ins = xs.concat(ys).concat(sampleWeights); const outs = trainFunction(ins); tfc.dispose(ins); for (let i = 0; i < outLabels.length; ++i) { const label = outLabels[i]; const out = outs[i]; batchLogs[label] = out; tfc.keep(out); } await callbackList.onBatchEnd(batchIndex, batchLogs); disposeTensorsInLogs(batchLogs); batchIndex++; stepsDone++; } if (hasBatchesPerEpoch ? stepsDone >= args.batchesPerEpoch : iteratorOut.done) { // Epoch finished. Perform validation. if (doValidation) { let valOuts; if (isDatasetObject(args.validationData)) { valOuts = toList(await model.evaluateDataset(args.validationData, { batches: args.validationBatches })); } else { valOuts = toList(model.evaluate(valXs, valYs, { batchSize: args.validationBatchSize == null ? DEFAULT_VALIDATION_BATCH_SIZE : args.validationBatchSize, verbose: 0 })); } for (let i = 0; i < model.metricsNames.length; ++i) { epochLogs[`val_${model.metricsNames[i]}`] = valOuts[i]; } } // Call `break` to exit one epoch lopp after validation is done. If // config.batchesPerEpoch is specified, an epoch while loop will // stop when `stepsDone >= config.batchesPerEpoch`. When // config.batchesPerEpoch is not provided, the following `break` is // required to exit the while lopp after dataset is exhausted. break; } if (model.stopTraining_) { break; } } await callbackList.onEpochEnd(epoch, epochLogs); epoch++; if (model.stopTraining_) { break; } } await callbackList.onTrainEnd(); await model.history.syncData(); return model.history; } finally { model.isTraining = false; } } /** Helper function that determines number of steps (batches) per epoch. */ function getStepsPerEpoch(dataset, args) { // Attempt to determine # of batches in an epoch. let stepsPerEpoch = null; if (args.batchesPerEpoch != null) { stepsPerEpoch = args.batchesPerEpoch; } else if (Number.isFinite(dataset.size)) { stepsPerEpoch = dataset.size; } return stepsPerEpoch; } // Check if provided object is a Dataset object by checking its .iterator // element. function isDatasetObject(dataset) { return (typeof dataset.iterator === 'function'); } // Check if provided object is a LazyIterator object by checking it's .next // element. function isLazyIteratorObject(iterator) { return (typeof iterator.next === 'function'); } export async function evaluateDataset( // Type `model` as `any` here to avoid circular dependency w/ // training.ts. // tslint:disable-next-line:no-any model, dataset, args) { args = args || {}; const hasBatches = args.batches != null; const f = model.testFunction; let outs = []; if (args.verbose > 0) { throw new NotImplementedError('Verbose mode is not implemented yet.'); } tfc.util.assert(!hasBatches || (args.batches > 0 && Number.isInteger(args.batches)), () => 'Test loop expects `batches` to be a positive integer, but ' + `received ${JSON.stringify(args.batches)}`); const dataIterator = isLazyIteratorObject(dataset) ? dataset : await dataset.iterator(); // Keeps track of number of examples used in this evaluation. let numExamples = 0; let batch = 0; while (hasBatches ? batch < args.batches : true) { const iteratorOut = await dataIterator.next(); outs = tfc.tidy(() => { if (iteratorOut.value) { // TODO(cais): Once real dataset is available, use // `map(x => standardizeDataIteratorOutput(model, x).map(f)`. const { xs, ys } = standardizeDataIteratorOutput(model, iteratorOut.value); const xsAndYs = xs.concat(ys); const batchOuts = tfc.tidy(() => f(xsAndYs)); tfc.dispose(xsAndYs); if (batch === 0) { for (let i = 0; i < batchOuts.length; ++i) { outs.push(scalar(0)); } } const batchSize = xsAndYs[0].shape[0]; for (let i = 0; i < batchOuts.length; ++i) { const batchOut = batchOuts[i]; const oldScalar = outs[i]; outs[i] = tfc.tidy(() => tfc.add(outs[i], tfc.mul(batchSize, batchOut))); if (batch > 0) { tfc.dispose(oldScalar); } } tfc.dispose(batchOuts); numExamples += batchSize; ++batch; } return outs; }); if (iteratorOut.done) { if (hasBatches) { console.warn('Your dataset iterator ran out of data during evaluateDataset(). ' + 'Interrupting evalution. Make sure that your ' + 'dataset can generate at least `batches` ' + `batches (in this case, ${args.batches} batches). ` + 'You may need to use the repeat() function when building ' + 'your dataset.'); } break; } } for (let i = 0; i < outs.length; ++i) { const oldScalar = outs[i]; outs[i] = tfc.div(outs[i], numExamples); tfc.dispose(oldScalar); } return singletonOrArray(outs); } //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoidHJhaW5pbmdfZGF0YXNldC5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uLy4uLy4uLy4uLy4uL3RmanMtbGF5ZXJzL3NyYy9lbmdpbmUvdHJhaW5pbmdfZGF0YXNldC50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQTs7Ozs7Ozs7R0FRRztBQUVIOztHQUVHO0FBRUgsT0FBTyxLQUFLLEdBQUcsTUFBTSx1QkFBdUIsQ0FBQztBQUM3QyxPQUFPLEVBQUMsTUFBTSxFQUFDLE1BQU0sdUJBQXVCLENBQUM7QUFDN0MsT0FBTyxFQUFlLGtCQUFrQixFQUFzRCxvQkFBb0IsRUFBb0IsTUFBTSxtQkFBbUIsQ0FBQztBQUNoSyxPQUFPLEVBQUMsbUJBQW1CLEVBQUUsVUFBVSxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBQzFELE9BQU8sRUFBQyxvQkFBb0IsRUFBaUIsTUFBTSxTQUFTLENBQUM7QUFFN0QsT0FBTyxFQUFDLGdCQUFnQixFQUFFLE1BQU0sRUFBQyxNQUFNLHdCQUF3QixDQUFDO0FBR2hFLE9BQU8sRUFBOEIsdUJBQXVCLEVBQUUsa0JBQWtCLEVBQUMsTUFBTSxrQkFBa0IsQ0FBQztBQWlLMUcsMERBQTBEO0FBQzFELE1BQU0sNkJBQTZCLEdBQUcsRUFBRSxDQUFDO0FBRXpDOzs7Ozs7Ozs7Ozs7O0dBYUc7QUFDSCxTQUFTLDZCQUE2QjtBQUNsQyw2REFBNkQ7QUFDN0QsZUFBZTtBQUNmLGtDQUFrQztBQUNsQyxLQUFVLEVBQUUsV0FBZTtJQUM3QixJQUFJLEVBQXNCLENBQUM7SUFDM0IsSUFBSSxFQUFzQixDQUFDO0lBRTNCLE1BQU0sY0FBYyxHQUFHLFdBQWdDLENBQUM7SUFDeEQsRUFBRSxHQUFHLGNBQWMsQ0FBQyxJQUFJLENBQUMsQ0FBQztJQUMxQixFQUFFLEdBQUcsY0FBYyxDQUFDLElBQUksQ0FBQyxDQUFDO0lBQzFCLEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUNYLEVBQUUsSUFBSSxJQUFJLElBQUksRUFBRSxJQUFJLElBQUksRUFDeEIsR0FBRyxFQUFFLENBQUMsOERBQThEO1FBQ2hFLDREQUE0RDtRQUM1RCw4REFBOEQ7UUFDOUQsNERBQTREO1FBQzVELEdBQUcsV0FBVyxFQUFFLENBQUMsQ0FBQztJQUUxQixNQUFNLFdBQVcsR0FDYix5QkFBeUIsQ0FBQyxPQUFPLEVBQUUsS0FBSyxDQUFDLFVBQVUsRUFBRSxFQUFFLENBQUMsQ0FBQztJQUM3RCxNQUFNLFdBQVcsR0FDYix5QkFBeUIsQ0FBQyxRQUFRLEVBQUUsS0FBSyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUMsQ0FBQztJQUUvRCxNQUFNLFNBQVMsR0FBVyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBRWxELEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUNYLFdBQVcsQ0FBQyxNQUFNLEtBQUssS0FBSyxDQUFDLE1BQU0sQ0FBQyxNQUFNLEVBQzFDLEdBQUcsRUFBRSxDQUFDLG1CQUFtQixLQUFLLENBQUMsTUFBTSxDQUFDLE1BQU0sMkJBQTJCO1FBQ25FLFlBQVksV0FBVyxDQUFDLE1BQU0sa0NBQWtDO1FBQ2hFLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxLQUFLLENBQUMsVUFBVSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0lBRWhELEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUNYLFdBQVcsQ0FBQyxNQUFNLEtBQUssS0FBSyxDQUFDLE9BQU8sQ0FBQyxNQUFNLEVBQzNDLEdBQUcsRUFBRSxDQUNELG1CQUFtQixLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sNEJBQTRCO1FBQ25FLFlBQVksV0FBVyxDQUFDLE1BQU0sb0NBQW9DO1FBQ2xFLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxLQUFLLENBQUMsV0FBVyxDQUFDLEdBQUcsQ0FBQyxDQUFDO0lBRWpELEtBQUssSUFBSSxNQUFNLEdBQUcsQ0FBQyxFQUFFLE1BQU0sR0FBRyxXQUFXLENBQUMsTUFBTSxFQUFFLE1BQU0sRUFBRSxFQUFFO1FBQzFELEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUNYLFdBQVcsQ0FBQyxNQUFNLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEtBQUssU0FBUyxFQUMxQyxHQUFHLEVBQUUsQ0FBQyw2QkFBNkI7WUFDL0IsR0FBRyxLQUFLLENBQUMsVUFBVSxDQUFDLE1BQU0sQ0FBQyxRQUNyQixXQUFXLENBQUMsTUFBTSxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxJQUFJO1lBQ3RDLGFBQWEsU0FBUyxtQkFBbUIsS0FBSyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUM7S0FDMUU7SUFFRCxLQUFLLElBQUksTUFBTSxHQUFHLENBQUMsRUFBRSxNQUFNLEdBQUcsV0FBVyxDQUFDLE1BQU0sRUFBRSxNQUFNLEVBQUUsRUFBRTtRQUMxRCxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxXQUFXLENBQUMsTUFBTSxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLFNBQVMsRUFDMUMsR0FBRyxFQUFFLENBQUMsOEJBQThCO1lBQ2hDLEdBQUcsS0FBSyxDQUFDLFdBQVcsQ0FBQyxNQUFNLENBQUMsUUFDdEIsV0FBVyxDQUFDLE1BQU0sQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsSUFBSTtZQUN0QyxhQUFhLFNBQVMsbUJBQW1CLEtBQUssQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDO0tBQzFFO0lBRUQsT0FBTyxFQUFDLEVBQUUsRUFBRSxXQUFXLEVBQUUsRUFBRSxFQUFFLFdBQVcsRUFBQyxDQUFDO0FBQzVDLENBQUM7QUFFRCxTQUFTLHlCQUF5QixDQUM5QixhQUFxQixFQUFFLEtBQWUsRUFBRSxNQUEwQjtJQUNwRSxJQUFJLE1BQU0sWUFBWSxHQUFHLENBQUMsTUFBTSxFQUFFO1FBQ2hDLE9BQU8sQ0FBQyxNQUFNLENBQUMsQ0FBQztLQUNqQjtTQUFNLElBQUksS0FBSyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUMsRUFBRTtRQUNoQyxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxNQUFNLENBQUMsTUFBTSxLQUFLLEtBQUssQ0FBQyxNQUFNLEVBQzlCLEdBQUcsRUFBRSxDQUFDLHdCQUF3QixNQUFNLENBQUMsTUFBTSwwQkFDdkMsS0FBSyxDQUFDLE1BQU0saUJBQWlCLGFBQWEsU0FBUyxLQUFLLEdBQUcsQ0FBQyxDQUFDO1FBQ3JFLE9BQU8sTUFBTSxDQUFDO0tBQ2Y7U0FBTTtRQUNMLE1BQU0sTUFBTSxHQUFpQixFQUFFLENBQUM7UUFDaEMsa0RBQWtEO1FBQ2xELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFO1lBQ3hCLElBQUksTUFBTSxDQUFDLElBQUksQ0FBQyxJQUFJLElBQUksRUFBRTtnQkFDeEIsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsK0RBQStEO29CQUMvRCxHQUFHLGFBQWEsU0FBUyxJQUFJLElBQUksQ0FBQyxDQUFDO2FBQ3hDO1lBQ0QsTUFBTSxDQUFDLElBQUksQ0FBQyxNQUFNLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQztTQUMzQjtRQUNELE9BQU8sTUFBTSxDQUFDO0tBQ2Y7QUFDSCxDQUFDO0FBRUQsU0FBUywrQkFBK0IsQ0FDcEMsSUFJaUM7SUFFbkMsSUFBSSxJQUFJLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtRQUNyQixNQUFNLElBQUksbUJBQW1CLENBQ3pCLHdEQUF3RCxDQUFDLENBQUM7S0FDL0Q7SUFDRCxPQUFPLEVBQUMsRUFBRSxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxFQUFFLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFDLENBQUM7QUFDcEMsQ0FBQztBQUVELE1BQU0sQ0FBQyxLQUFLLFVBQVUsVUFBVTtBQUM1Qiw2REFBNkQ7QUFDN0QsZUFBZTtBQUNmLGtDQUFrQztBQUNsQyxLQUFVLEVBQUUsT0FBbUIsRUFDL0IsSUFBNEI7SUFDOUIsTUFBTSxrQkFBa0IsR0FBRyxJQUFJLENBQUMsZUFBZSxJQUFJLElBQUksQ0FBQztJQUN4RCxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxLQUFLLENBQUMsU0FBUyxJQUFJLElBQUksRUFDdkIsR0FBRyxFQUFFLENBQUMsd0RBQXdEO1FBQzFELDBDQUEwQyxDQUFDLENBQUM7SUFFcEQsR0FBRyxDQUFDLElBQUksQ0FBQyxNQUFNLENBQ1gsSUFBSSxJQUFJLElBQUksRUFDWixHQUFHLEVBQUUsQ0FBQywyREFBMkQ7UUFDN0Qsc0NBQXNDLENBQUMsQ0FBQztJQUNoRCxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxJQUFJLENBQUMsTUFBTSxJQUFJLElBQUksSUFBSSxJQUFJLENBQUMsTUFBTSxHQUFHLENBQUMsSUFBSSxNQUFNLENBQUMsU0FBUyxDQUFDLElBQUksQ0FBQyxNQUFNLENBQUMsRUFDdkUsR0FBRyxFQUFFLENBQUMsK0RBQStEO1FBQ2pFLG9CQUFvQixJQUFJLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQztJQUMzQyxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxDQUFDLGtCQUFrQjtRQUNmLENBQUMsSUFBSSxDQUFDLGVBQWUsR0FBRyxDQUFDLElBQUksTUFBTSxDQUFDLFNBQVMsQ0FBQyxJQUFJLENBQUMsZUFBZSxDQUFDLENBQUMsRUFDeEUsR0FBRyxFQUFFLENBQUMsK0RBQStEO1FBQ2pFLDBDQUEwQyxJQUFJLENBQUMsZUFBZSxFQUFFLENBQUMsQ0FBQztJQUMxRSxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU07SUFDWCxrQ0FBa0M7SUFDakMsSUFBWSxDQUFDLGlCQUFpQixDQUFDLElBQUksSUFBSSxFQUN4QyxHQUFHLEVBQUUsQ0FBQyx3REFBd0Q7UUFDMUQsNkJBQTZCLENBQUMsQ0FBQztJQUV2QyxJQUFJLEtBQUssQ0FBQyxVQUFVLEVBQUU7UUFDcEIsTUFBTSxJQUFJLEtBQUssQ0FDWCw4REFBOEQsQ0FBQyxDQUFDO0tBQ3JFO0lBQ0QsS0FBSyxDQUFDLFVBQVUsR0FBRyxJQUFJLENBQUM7SUFFeEIsSUFBSTtRQUNGLE1BQU0sWUFBWSxHQUFHLElBQUksQ0FBQyxjQUFjLElBQUksSUFBSSxDQUFDO1FBQ2pELElBQUksS0FBOEIsQ0FBQztRQUNuQyxJQUFJLEtBQThCLENBQUM7UUFDbkMsSUFBSSxZQUFZLEVBQUU7WUFDaEIsSUFBSSxlQUFlLENBQUMsSUFBSSxDQUFDLGNBQWMsQ0FBQyxFQUFFO2dCQUN4QyxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxJQUFJLENBQUMsaUJBQWlCLElBQUksSUFBSTtvQkFDMUIsQ0FBQyxJQUFJLENBQUMsaUJBQWlCLEdBQUcsQ0FBQzt3QkFDMUIsTUFBTSxDQUFDLFNBQVMsQ0FBQyxJQUFJLENBQUMsaUJBQWlCLENBQUMsQ0FBQyxFQUM5QyxHQUFHLEVBQUUsQ0FBQyxrREFBa0Q7b0JBQ3BELDJEQUEyRDtvQkFDM0QsK0JBQStCO29CQUMvQixXQUFXLElBQUksQ0FBQyxpQkFBaUIsRUFBRSxDQUFDLENBQUM7YUFDOUM7aUJBQU07Z0JBQ0wsTUFBTSxjQUFjLEdBQUcsK0JBQStCLENBQ2xELElBQUksQ0FBQyxjQUtKLENBQUMsQ0FBQztnQkFDUCxLQUFLLEdBQUcsY0FBYyxDQUFDLEVBQUUsQ0FBQztnQkFDMUIsS0FBSyxHQUFHLGNBQWMsQ0FBQyxFQUFFLENBQUM7YUFDM0I7U0FDRjtRQUVELE1BQU0sYUFBYSxHQUFHLEtBQUssQ0FBQyxpQkFBaUIsRUFBRSxDQUFDO1FBQ2hELE1BQU0sU0FBUyxHQUFHLEtBQUssQ0FBQyxzQkFBc0IsRUFBYyxDQUFDO1FBRTdELElBQUksZUFBeUIsQ0FBQztRQUM5QixJQUFJLFlBQVksRUFBRTtZQUNoQixlQUFlO2dCQUNYLFNBQVMsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxNQUFNLENBQUMsU0FBUyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQzlEO2FBQU07WUFDTCxlQUFlLEdBQUcsU0FBUyxDQUFDLEtBQUssRUFBRSxDQUFDO1NBQ3JDO1FBRUQsTUFBTSxTQUFTLEdBQUcsb0JBQW9CLENBQUMsSUFBSSxDQUFDLFNBQVMsRUFBRSxJQUFJLENBQUMsVUFBVSxDQUFDLENBQUM7UUFDeEUsTUFBTSxPQUFPLEdBQUcsSUFBSSxDQUFDLE9BQU8sSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQztRQUN4RCxNQUFNLEVBQUMsWUFBWSxFQUFFLE9BQU8sRUFBQyxHQUFHLGtCQUFrQixDQUM5QyxTQUFTLEVBQUUsT0FBTyxFQUFFLElBQUksQ0FBQyxNQUFNLEVBQUUsSUFBSSxFQUFFLElBQUksRUFDM0MsZ0JBQWdCLENBQUMsT0FBTyxFQUFFLElBQUksQ0FBQyxFQUMvQixJQUFJLEVBQUcsK0NBQStDO1FBQ3RELFlBQVksRUFBRSxlQUFlLENBQUMsQ0FBQztRQUNuQyxZQUFZLENBQUMsUUFBUSxDQUFDLEtBQUssQ0FBQyxDQUFDO1FBQzdCLEtBQUssQ0FBQyxPQUFPLEdBQUcsT0FBTyxDQUFDO1FBRXhCLE1BQU0sWUFBWSxDQUFDLFlBQVksRUFBRSxDQUFDO1FBQ2xDLEtBQUssQ0FBQyxhQUFhLEdBQUcsS0FBSyxDQUFDO1FBQzVCLElBQUksS0FBSyxHQUFHLElBQUksQ0FBQyxZQUFZLElBQUksSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxZQUFZLENBQUM7UUFFOUQsSUFBSSxZQUFZLEdBQUcsTUFBTSxPQUFPLENBQUMsUUFBUSxFQUFFLENBQUM7UUFDNUMsT0FBTyxLQUFLLEdBQUcsSUFBSSxDQUFDLE1BQU0sRUFBRTtZQUMxQixNQUFNLFNBQVMsR0FBbUIsRUFBRSxDQUFDO1lBQ3JDLE1BQU0sWUFBWSxDQUFDLFlBQVksQ0FBQyxLQUFLLENBQUMsQ0FBQztZQUN2QyxJQUFJLFNBQVMsR0FBRyxDQUFDLENBQUM7WUFDbEIsSUFBSSxVQUFVLEdBQUcsQ0FBQyxDQUFDO1lBQ25CLElBQUksQ0FBQyxrQkFBa0IsRUFBRTtnQkFDdkIsWUFBWSxHQUFHLE1BQU0sT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO2FBQ3pDO1lBQ0QsT0FBTyxrQkFBa0IsQ0FBQyxDQUFDLENBQUMsU0FBUyxHQUFHLElBQUksQ0FBQyxlQUFlLENBQUMsQ0FBQyxDQUFDLElBQUksRUFBRTtnQkFDbkUsTUFBTSxXQUFXLEdBQUcsTUFBTSxZQUFZLENBQUMsSUFBSSxFQUFFLENBQUM7Z0JBRTlDLCtEQUErRDtnQkFDL0Qsd0NBQXdDO2dCQUN4QyxJQUFJLGtCQUFrQixJQUFJLFdBQVcsQ0FBQyxJQUFJLEVBQUU7b0JBQzFDLE9BQU8sQ0FBQyxJQUFJLENBQ1Isb0NBQW9DO3dCQUNwQyxHQUFHLElBQUksQ0FBQyxlQUFlLElBQUk7d0JBQzNCLGtEQUFrRDt3QkFDbEQsR0FBRyxTQUFTLFlBQVk7d0JBQ3hCLDZDQUE2Qzt3QkFDN0MsMkRBQTJEO3dCQUMzRCx5QkFBeUI7d0JBQ3pCLEdBQUcsSUFBSSxDQUFDLGVBQWUsR0FBRyxJQUFJLENBQUMsTUFBTSxhQUFhO3dCQUNsRCwwREFBMEQ7d0JBQzFELGVBQWUsQ0FBQyxDQUFDO29CQUNyQixNQUFNO2lCQUNQO2dCQUVELElBQUksV0FBVyxDQUFDLEtBQUssSUFBSSxJQUFJLEVBQUU7b0JBQzdCLE1BQU0sRUFBQyxFQUFFLEVBQUUsRUFBRSxFQUFDLEdBQ1YsNkJBQTZCLENBQUMsS0FBSyxFQUFFLFdBQVcsQ0FBQyxLQUFLLENBQUMsQ0FBQztvQkFDNUQsTUFBTSxTQUFTLEdBQW1CLEVBQUUsQ0FBQztvQkFDckMsU0FBUyxDQUFDLE9BQU8sQ0FBQyxHQUFHLFVBQVUsQ0FBQztvQkFDaEMsU0FBUyxDQUFDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBRW5DLE1BQU0sWUFBWSxDQUFDLFlBQVksQ0FBQyxVQUFVLEVBQUUsU0FBUyxDQUFDLENBQUM7b0JBRXZELE1BQU0sYUFBYSxHQUFpQixFQUFFLENBQUM7b0JBQ3ZDLElBQUksSUFBSSxDQUFDLFdBQVcsSUFBSSxJQUFJLEVBQUU7d0JBQzVCLE1BQU0sb0JBQW9CLEdBQ3RCLHVCQUF1QixDQUFDLElBQUksQ0FBQyxXQUFXLEVBQUUsS0FBSyxDQUFDLFdBQVcsQ0FBQyxDQUFDO3dCQUNqRSxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsb0JBQW9CLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFOzRCQUNwRCxhQUFhLENBQUMsSUFBSSxDQUFDLE1BQU0sa0JBQWtCLENBQ3ZDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxJQUFJLEVBQUUsb0JBQW9CLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO3lCQUM1QztxQkFDRjtvQkFFRCxrQkFBa0I7b0JBQ2xCLE1BQU0sR0FBRyxHQUFHLEVBQUUsQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLENBQUMsTUFBTSxDQUFDLGFBQWEsQ0FBQyxDQUFDO29CQUNoRCxNQUFNLElBQUksR0FBRyxhQUFhLENBQUMsR0FBRyxDQUFDLENBQUM7b0JBQ2hDLEdBQUcsQ0FBQyxPQUFPLENBQUMsR0FBRyxDQUFDLENBQUM7b0JBQ2pCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxTQUFTLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO3dCQUN6QyxNQUFNLEtBQUssR0FBRyxTQUFTLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBQzNCLE1BQU0sR0FBRyxHQUFHLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQzt3QkFDcEIsU0FBUyxDQUFDLEtBQUssQ0FBQyxHQUFHLEdBQUcsQ0FBQzt3QkFDdkIsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQztxQkFDZjtvQkFFRCxNQUFNLFlBQVksQ0FBQyxVQUFVLENBQUMsVUFBVSxFQUFFLFNBQVMsQ0FBQyxDQUFDO29CQUNyRCxvQkFBb0IsQ0FBQyxTQUFTLENBQUMsQ0FBQztvQkFFaEMsVUFBVSxFQUFFLENBQUM7b0JBQ2IsU0FBUyxFQUFFLENBQUM7aUJBQ2I7Z0JBRUQsSUFBSSxrQkFBa0IsQ0FBQyxDQUFDLENBQUMsU0FBUyxJQUFJLElBQUksQ0FBQyxlQUFlLENBQUMsQ0FBQztvQkFDbkMsV0FBVyxDQUFDLElBQUksRUFBRTtvQkFDekMsc0NBQXNDO29CQUN0QyxJQUFJLFlBQVksRUFBRTt3QkFDaEIsSUFBSSxPQUFxQixDQUFDO3dCQUMxQixJQUFJLGVBQWUsQ0FBQyxJQUFJLENBQUMsY0FBYyxDQUFDLEVBQUU7NEJBQ3hDLE9BQU8sR0FBRyxNQUFNLENBQUMsTUFBTSxLQUFLLENBQUMsZUFBZSxDQUN4QyxJQUFJLENBQUMsY0FBYyxFQUFFLEVBQUMsT0FBTyxFQUFFLElBQUksQ0FBQyxpQkFBaUIsRUFBQyxDQUFDLENBQUMsQ0FBQzt5QkFDOUQ7NkJBQU07NEJBQ0wsT0FBTyxHQUFHLE1BQU0sQ0FBQyxLQUFLLENBQUMsUUFBUSxDQUFDLEtBQUssRUFBRSxLQUFLLEVBQUU7Z0NBQzVDLFNBQVMsRUFBRSxJQUFJLENBQUMsbUJBQW1CLElBQUksSUFBSSxDQUFDLENBQUM7b0NBQ3pDLDZCQUE2QixDQUFDLENBQUM7b0NBQy9CLElBQUksQ0FBQyxtQkFBbUI7Z0NBQzVCLE9BQU8sRUFBRSxDQUFDOzZCQUNYLENBQUMsQ0FBQyxDQUFDO3lCQUNMO3dCQUNELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxLQUFLLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTs0QkFDbEQsU0FBUyxDQUFDLE9BQU8sS0FBSyxDQUFDLFlBQVksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEdBQUcsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDO3lCQUN4RDtxQkFDRjtvQkFDRCxtRUFBbUU7b0JBQ25FLGdFQUFnRTtvQkFDaEUsd0RBQXdEO29CQUN4RCxtRUFBbUU7b0JBQ25FLDhEQUE4RDtvQkFDOUQsTUFBTTtpQkFDUDtnQkFFRCxJQUFJLEtBQUssQ0FBQyxhQUFhLEVBQUU7b0JBQ3ZCLE1BQU07aUJBQ1A7YUFDRjtZQUNELE1BQU0sWUFBWSxDQUFDLFVBQVUsQ0FBQyxLQUFLLEVBQUUsU0FBUyxDQUFDLENBQUM7WUFDaEQsS0FBSyxFQUFFLENBQUM7WUFDUixJQUFJLEtBQUssQ0FBQyxhQUFhLEVBQUU7Z0JBQ3ZCLE1BQU07YUFDUDtTQUNGO1FBQ0QsTUFBTSxZQUFZLENBQUMsVUFBVSxFQUFFLENBQUM7UUFDaEMsTUFBTSxLQUFLLENBQUMsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO1FBQy9CLE9BQU8sS0FBSyxDQUFDLE9BQU8sQ0FBQztLQUN0QjtZQUFTO1FBQ1IsS0FBSyxDQUFDLFVBQVUsR0FBRyxLQUFLLENBQUM7S0FDMUI7QUFDSCxDQUFDO0FBRUQsMkVBQTJFO0FBQzNFLFNBQVMsZ0JBQWdCLENBQ3JCLE9BQW1CLEVBQUUsSUFBNEI7SUFDbkQsaURBQWlEO0lBQ2pELElBQUksYUFBYSxHQUFXLElBQUksQ0FBQztJQUNqQyxJQUFJLElBQUksQ0FBQyxlQUFlLElBQUksSUFBSSxFQUFFO1FBQ2hDLGFBQWEsR0FBRyxJQUFJLENBQUMsZUFBZSxDQUFDO0tBQ3RDO1NBQU0sSUFBSSxNQUFNLENBQUMsUUFBUSxDQUFDLE9BQU8sQ0FBQyxJQUFJLENBQUMsRUFBRTtRQUN4QyxhQUFhLEdBQUcsT0FBTyxDQUFDLElBQUksQ0FBQztLQUM5QjtJQUNELE9BQU8sYUFBYSxDQUFDO0FBQ3ZCLENBQUM7QUFFRCx5RUFBeUU7QUFDekUsV0FBVztBQUNYLFNBQVMsZUFBZSxDQUNwQixPQUlVO0lBQ1osT0FBTyxDQUFDLE9BQVEsT0FBc0IsQ0FBQyxRQUFRLEtBQUssVUFBVSxDQUFDLENBQUM7QUFDbEUsQ0FBQztBQUVELDJFQUEyRTtBQUMzRSxXQUFXO0FBQ1gsU0FBUyxvQkFBb0IsQ0FBSSxRQUNlO0lBQzlDLE9BQU8sQ0FBQyxPQUFRLFFBQTRCLENBQUMsSUFBSSxLQUFLLFVBQVUsQ0FBQyxDQUFDO0FBQ3BFLENBQUM7QUFFRCxNQUFNLENBQUMsS0FBSyxVQUFVLGVBQWU7QUFDakMsNkRBQTZEO0FBQzdELGVBQWU7QUFDZixrQ0FBa0M7QUFDbEMsS0FBVSxFQUFFLE9BQW1DLEVBQy9DLElBQThCO0lBQ2hDLElBQUksR0FBRyxJQUFJLElBQUksRUFBRSxDQUFDO0lBQ2xCLE1BQU0sVUFBVSxHQUFHLElBQUksQ0FBQyxPQUFPLElBQUksSUFBSSxDQUFDO0lBQ3hDLE1BQU0sQ0FBQyxHQUFHLEtBQUssQ0FBQyxZQUFZLENBQUM7SUFDN0IsSUFBSSxJQUFJLEdBQWlCLEVBQUUsQ0FBQztJQUM1QixJQUFJLElBQUksQ0FBQyxPQUFPLEdBQUcsQ0FBQyxFQUFFO1FBQ3BCLE1BQU0sSUFBSSxtQkFBbUIsQ0FBQyxzQ0FBc0MsQ0FBQyxDQUFDO0tBQ3ZFO0lBRUQsR0FBRyxDQUFDLElBQUksQ0FBQyxNQUFNLENBQ1gsQ0FBQyxVQUFVLElBQUksQ0FBQyxJQUFJLENBQUMsT0FBTyxHQUFHLENBQUMsSUFBSSxNQUFNLENBQUMsU0FBUyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxFQUNuRSxHQUFHLEVBQUUsQ0FBQyw0REFBNEQ7UUFDOUQsWUFBWSxJQUFJLENBQUMsU0FBUyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsRUFBRSxDQUFDLENBQUM7SUFDcEQsTUFBTSxZQUFZLEdBQUcsb0JBQW9CLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQztRQUNoRCxPQUEwQixDQUFBLENBQUM7UUFDM0IsTUFBTyxPQUFzQixDQUFDLFFBQVEsRUFBRSxDQUFDO0lBQzdDLDZEQUE2RDtJQUM3RCxJQUFJLFdBQVcsR0FBRyxDQUFDLENBQUM7SUFDcEIsSUFBSSxLQUFLLEdBQUcsQ0FBQyxDQUFDO0lBRWQsT0FBTyxVQUFVLENBQUMsQ0FBQyxDQUFDLEtBQUssR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxJQUFJLEVBQUU7UUFDL0MsTUFBTSxXQUFXLEdBQUcsTUFBTSxZQUFZLENBQUMsSUFBSSxFQUFFLENBQUM7UUFDOUMsSUFBSSxHQUFHLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxFQUFFO1lBQ25CLElBQUksV0FBVyxDQUFDLEtBQUssRUFBRTtnQkFDckIsa0RBQWtEO2dCQUNsRCwrREFBK0Q7Z0JBQy9ELE1BQU0sRUFBQyxFQUFFLEVBQUUsRUFBRSxFQUFDLEdBQ1YsNkJBQTZCLENBQUMsS0FBSyxFQUFFLFdBQVcsQ0FBQyxLQUFLLENBQUMsQ0FBQztnQkFDNUQsTUFBTSxPQUFPLEdBQUcsRUFBRSxDQUFDLE1BQU0sQ0FBQyxFQUFFLENBQUMsQ0FBQztnQkFDOUIsTUFBTSxTQUFTLEdBQUcsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQztnQkFDN0MsR0FBRyxDQUFDLE9BQU8sQ0FBQyxPQUFPLENBQUMsQ0FBQztnQkFFckIsSUFBSSxLQUFLLEtBQUssQ0FBQyxFQUFFO29CQUNmLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxTQUFTLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO3dCQUN6QyxJQUFJLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO3FCQUN0QjtpQkFDRjtnQkFFRCxNQUFNLFNBQVMsR0FBRyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO2dCQUN0QyxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsU0FBUyxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtvQkFDekMsTUFBTSxRQUFRLEdBQUcsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUM5QixNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQzFCLElBQUksQ0FBQyxDQUFDLENBQUM7d0JBQ0gsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLFNBQVMsRUFBRSxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQ25FLElBQUksS0FBSyxHQUFHLENBQUMsRUFBRTt3QkFDYixHQUFHLENBQUMsT0FBTyxDQUFDLFNBQVMsQ0FBQyxDQUFDO3FCQUN4QjtpQkFDRjtnQkFDRCxHQUFHLENBQUMsT0FBTyxDQUFDLFNBQVMsQ0FBQyxDQUFDO2dCQUN2QixXQUFXLElBQUksU0FBUyxDQUFDO2dCQUV6QixFQUFFLEtBQUssQ0FBQzthQUNUO1lBQ0QsT0FBTyxJQUFJLENBQUM7UUFDZCxDQUFDLENBQUMsQ0FBQztRQUVILElBQUksV0FBVyxDQUFDLElBQUksRUFBRTtZQUNwQixJQUFJLFVBQVUsRUFBRTtnQkFDZCxPQUFPLENBQUMsSUFBSSxDQUNSLGtFQUFrRTtvQkFDbEUsOENBQThDO29CQUM5QywwQ0FBMEM7b0JBQzFDLDBCQUEwQixJQUFJLENBQUMsT0FBTyxhQUFhO29CQUNuRCwwREFBMEQ7b0JBQzFELGVBQWUsQ0FBQyxDQUFDO2FBQ3RCO1lBQ0QsTUFBTTtTQUNQO0tBQ0Y7SUFFRCxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsSUFBSSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtRQUNwQyxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDMUIsSUFBSSxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxDQUFDO1FBQ3hDLEdBQUcsQ0FBQyxPQUFPLENBQUMsU0FBUyxDQUFDLENBQUM7S0FDeEI7SUFFRCxPQUFPLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAxOCBHb29nbGUgTExDXG4gKlxuICogVXNlIG9mIHRoaXMgc291cmNlIGNvZGUgaXMgZ292ZXJuZWQgYnkgYW4gTUlULXN0eWxlXG4gKiBsaWNlbnNlIHRoYXQgY2FuIGJlIGZvdW5kIGluIHRoZSBMSUNFTlNFIGZpbGUgb3IgYXRcbiAqIGh0dHBzOi8vb3BlbnNvdXJjZS5vcmcvbGljZW5zZXMvTUlULlxuICogPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cbiAqL1xuXG4vKipcbiAqIEludGVyZmFjZXMgYW5kIG1ldGhvZHMgZm9yIHRyYWluaW5nIG1vZGVscyB1c2luZyBUZW5zb3JGbG93LmpzIGRhdGFzZXRzLlxuICovXG5cbmltcG9ydCAqIGFzIHRmYyBmcm9tICdAdGVuc29yZmxvdy90ZmpzLWNvcmUnO1xuaW1wb3J0IHtzY2FsYXJ9IGZyb20gJ0B0ZW5zb3JmbG93L3RmanMtY29yZSc7XG5pbXBvcnQge0Jhc2VDYWxsYmFjaywgY29uZmlndXJlQ2FsbGJhY2tzLCBDdXN0b21DYWxsYmFja0FyZ3MsIEhpc3RvcnksIE1vZGVsTG9nZ2luZ1ZlcmJvc2l0eSwgc3RhbmRhcmRpemVDYWxsYmFja3MsIFlpZWxkRXZlcnlPcHRpb25zfSBmcm9tICcuLi9iYXNlX2NhbGxiYWNrcyc7XG5pbXBvcnQge05vdEltcGxlbWVudGVkRXJyb3IsIFZhbHVlRXJyb3J9IGZyb20gJy4uL2Vycm9ycyc7XG5pbXBvcnQge2Rpc3Bvc2VUZW5zb3JzSW5Mb2dzLCBVbnJlc29sdmVkTG9nc30gZnJvbSAnLi4vbG9ncyc7XG5pbXBvcnQge1RlbnNvck9yQXJyYXlPck1hcH0gZnJvbSAnLi4vdHlwZXMnO1xuaW1wb3J0IHtzaW5nbGV0b25PckFycmF5LCB0b0xpc3R9IGZyb20gJy4uL3V0aWxzL2dlbmVyaWNfdXRpbHMnO1xuXG5pbXBvcnQge0RhdGFzZXQsIExhenlJdGVyYXRvcn0gZnJvbSAnLi9kYXRhc2V0X3N0dWInO1xuaW1wb3J0IHtDbGFzc1dlaWdodCwgQ2xhc3NXZWlnaHRNYXAsIHN0YW5kYXJkaXplQ2xhc3NXZWlnaHRzLCBzdGFuZGFyZGl6ZVdlaWdodHN9IGZyb20gJy4vdHJhaW5pbmdfdXRpbHMnO1xuXG4vKipcbiAqIEludGVyZmFjZSBmb3IgY29uZmlndXJpbmcgbW9kZWwgdHJhaW5pbmcgYmFzZWQgb24gYSBkYXRhc2V0IG9iamVjdC5cbiAqL1xuZXhwb3J0IGludGVyZmFjZSBNb2RlbEZpdERhdGFzZXRBcmdzPFQ+IHtcbiAgLyoqXG4gICAqIChPcHRpb25hbCkgVG90YWwgbnVtYmVyIG9mIHN0ZXBzIChiYXRjaGVzIG9mIHNhbXBsZXMpIGJlZm9yZVxuICAgKiBkZWNsYXJpbmcgb25lIGVwb2NoIGZpbmlzaGVkIGFuZCBzdGFydGluZyB0aGUgbmV4dCBlcG9jaC4gSXQgc2hvdWxkXG4gICAqIHR5cGljYWxseSBiZSBlcXVhbCB0byB0aGUgbnVtYmVyIG9mIHNhbXBsZXMgb2YgeW91ciBkYXRhc2V0IGRpdmlkZWQgYnlcbiAgICogdGhlIGJhdGNoIHNpemUsIHNvIHRoYXQgYGZpdERhdGFzZXRgKCkgY2FsbCBjYW4gdXRpbGl6ZSB0aGUgZW50aXJlIGRhdGFzZXQuXG4gICAqIElmIGl0IGlzIG5vdCBwcm92aWRlZCwgdXNlIGBkb25lYCByZXR1cm4gdmFsdWUgaW4gYGl0ZXJhdG9yLm5leHQoKWAgYXNcbiAgICogc2lnbmFsIHRvIGZpbmlzaCBhbiBlcG9jaC5cbiAgICovXG4gIGJhdGNoZXNQZXJFcG9jaD86IG51bWJlcjtcblxuICAvKipcbiAgICogSW50ZWdlciBudW1iZXIgb2YgdGltZXMgdG8gaXRlcmF0ZSBvdmVyIHRoZSB0cmFpbmluZyBkYXRhc2V0LlxuICAgKi9cbiAgZXBvY2hzOiBudW1iZXI7XG5cbiAgLyoqXG4gICAqIFZlcmJvc2l0eSBsZXZlbC5cbiAgICpcbiAgICogRXhwZWN0ZWQgdG8gYmUgMCwgMSwgb3IgMi4gRGVmYXVsdDogMS5cbiAgICpcbiAgICogMCAtIE5vIHByaW50ZWQgbWVzc2FnZSBkdXJpbmcgZml0KCkgY2FsbC5cbiAgICogMSAtIEluIE5vZGUuanMgKHRmanMtbm9kZSksIHByaW50cyB0aGUgcHJvZ3Jlc3MgYmFyLCB0b2dldGhlciB3aXRoXG4gICAqICAgICByZWFsLXRpbWUgdXBkYXRlcyBvZiBsb3NzIGFuZCBtZXRyaWMgdmFsdWVzIGFuZCB0cmFpbmluZyBzcGVlZC5cbiAgICogICAgIEluIHRoZSBicm93c2VyOiBubyBhY3Rpb24uIFRoaXMgaXMgdGhlIGRlZmF1bHQuXG4gICAqIDIgLSBOb3QgaW1wbGVtZW50ZWQgeWV0LlxuICAgKi9cbiAgdmVyYm9zZT86IE1vZGVsTG9nZ2luZ1ZlcmJvc2l0eTtcblxuICAvKipcbiAgICogTGlzdCBvZiBjYWxsYmFja3MgdG8gYmUgY2FsbGVkIGR1cmluZyB0cmFpbmluZy5cbiAgICogQ2FuIGhhdmUgb25lIG9yIG1vcmUgb2YgdGhlIGZvbGxvd2luZyBjYWxsYmFja3M6XG4gICAqICAgLSBgb25UcmFpbkJlZ2luKGxvZ3MpYDogY2FsbGVkIHdoZW4gdHJhaW5pbmcgc3RhcnRzLlxuICAgKiAgIC0gYG9uVHJhaW5FbmQobG9ncylgOiBjYWxsZWQgd2hlbiB0cmFpbmluZyBlbmRzLlxuICAgKiAgIC0gYG9uRXBvY2hCZWdpbihlcG9jaCwgbG9ncylgOiBjYWxsZWQgYXQgdGhlIHN0YXJ0IG9mIGV2ZXJ5IGVwb2NoLlxuICAgKiAgIC0gYG9uRXBvY2hFbmQoZXBvY2gsIGxvZ3MpYDogY2FsbGVkIGF0IHRoZSBlbmQgb2YgZXZlcnkgZXBvY2guXG4gICAqICAgLSBgb25CYXRjaEJlZ2luKGJhdGNoLCBsb2dzKWA6IGNhbGxlZCBhdCB0aGUgc3RhcnQgb2YgZXZlcnkgYmF0Y2guXG4gICAqICAgLSBgb25CYXRjaEVuZChiYXRjaCwgbG9ncylgOiBjYWxsZWQgYXQgdGhlIGVuZCBvZiBldmVyeSBiYXRjaC5cbiAgICogICAtIGBvbllpZWxkKGVwb2NoLCBiYXRjaCwgbG9ncylgOiBjYWxsZWQgZXZlcnkgYHlpZWxkRXZlcnlgIG1pbGxpc2Vjb25kc1xuICAgKiAgICAgIHdpdGggdGhlIGN1cnJlbnQgZXBvY2gsIGJhdGNoIGFuZCBsb2dzLiBUaGUgbG9ncyBhcmUgdGhlIHNhbWVcbiAgICogICAgICBhcyBpbiBgb25CYXRjaEVuZCgpYC4gTm90ZSB0aGF0IGBvbllpZWxkYCBjYW4gc2tpcCBiYXRjaGVzIG9yXG4gICAqICAgICAgZXBvY2hzLiBTZWUgYWxzbyBkb2NzIGZvciBgeWllbGRFdmVyeWAgYmVsb3cuXG4gICAqL1xuICBjYWxsYmFja3M/OiBCYXNlQ2FsbGJhY2tbXXxDdXN0b21DYWxsYmFja0FyZ3N8Q3VzdG9tQ2FsbGJhY2tBcmdzW107XG5cbiAgLyoqXG4gICAqIERhdGEgb24gd2hpY2ggdG8gZXZhbHVhdGUgdGhlIGxvc3MgYW5kIGFueSBtb2RlbFxuICAgKiBtZXRyaWNzIGF0IHRoZSBlbmQgb2YgZWFjaCBlcG9jaC4gVGhlIG1vZGVsIHdpbGwgbm90IGJlIHRyYWluZWQgb24gdGhpc1xuICAgKiBkYXRhLiBUaGlzIGNvdWxkIGJlIGFueSBvZiB0aGUgZm9sbG93aW5nOlxuICAgKlxuICAgKiAgIC0gQW4gYXJyYXkgYFt4VmFsLCB5VmFsXWAsIHdoZXJlIHRoZSB0d28gdmFsdWVzIG1heSBiZSBgdGYuVGVuc29yYCxcbiAgICogICAgIGFuIGFycmF5IG9mIFRlbnNvcnMsIG9yIGEgbWFwIG9mIHN0cmluZyB0byBUZW5zb3IuXG4gICAqICAgLSBTaW1pbGFybHksIGFuIGFycmF5IGAgW3hWYWwsIHlWYWwsIHZhbFNhbXBsZVdlaWdodHNdYFxuICAgKiAgICAgKG5vdCBpbXBsZW1lbnRlZCB5ZXQpLlxuICAgKiAgIC0gYSBgRGF0YXNldGAgb2JqZWN0IHdpdGggZWxlbWVudHMgb2YgdGhlIGZvcm0gYHt4czogeFZhbCwgeXM6IHlWYWx9YCxcbiAgICogICAgIHdoZXJlIGB4c2AgYW5kIGB5c2AgYXJlIHRoZSBmZWF0dXJlIGFuZCBsYWJlbCB0ZW5zb3JzLCByZXNwZWN0aXZlbHkuXG4gICAqXG4gICAqIElmIGB2YWxpZGF0aW9uRGF0YWAgaXMgYW4gQXJyYXkgb2YgVGVuc29yIG9iamVjdHMsIGVhY2ggYHRmLlRlbnNvcmAgd2lsbCBiZVxuICAgKiBzbGljZWQgaW50byBiYXRjaGVzIGR1cmluZyB2YWxpZGF0aW9uLCB1c2luZyB0aGUgcGFyYW1ldGVyXG4gICAqIGB2YWxpZGF0aW9uQmF0Y2hTaXplYCAod2hpY2ggZGVmYXVsdHMgdG8gMzIpLiBUaGUgZW50aXJldHkgb2YgdGhlXG4gICAqIGB0Zi5UZW5zb3JgIG9iamVjdHMgd2lsbCBiZSB1c2VkIGluIHRoZSB2YWxpZGF0aW9uLlxuICAgKlxuICAgKiBJZiBgdmFsaWRhdGlvbkRhdGFgIGlzIGEgZGF0YXNldCBvYmplY3QsIGFuZCB0aGUgYHZhbGlkYXRpb25CYXRjaGVzYFxuICAgKiBwYXJhbWV0ZXIgaXMgc3BlY2lmaWVkLCB0aGUgdmFsaWRhdGlvbiB3aWxsIHVzZSBgdmFsaWRhdGlvbkJhdGNoZXNgIGJhdGNoZXNcbiAgICogZHJhd24gZnJvbSB0aGUgZGF0YXNldCBvYmplY3QuIElmIGB2YWxpZGF0aW9uQmF0Y2hlc2AgcGFyYW1ldGVyIGlzIG5vdFxuICAgKiBzcGVjaWZpZWQsIHRoZSB2YWxpZGF0aW9uIHdpbGwgc3RvcCB3aGVuIHRoZSBkYXRhc2V0IGlzIGV4aGF1c3RlZC5cbiAgICpcbiAgICogVGhlIG1vZGVsIHdpbGwgbm90IGJlIHRyYWluZWQgb24gdGhpcyBkYXRhLlxuICAgKi9cbiAgdmFsaWRhdGlvbkRhdGE/OiBbXG4gICAgVGVuc29yT3JBcnJheU9yTWFwLCBUZW5zb3JPckFycmF5T3JNYXBcbiAgXXxbVGVuc29yT3JBcnJheU9yTWFwLCBUZW5zb3JPckFycmF5T3JNYXAsIFRlbnNvck9yQXJyYXlPck1hcF18RGF0YXNldDxUPjtcblxuICAvKipcbiAgICogT3B0aW9uYWwgYmF0Y2ggc2l6ZSBmb3IgdmFsaWRhdGlvbi5cbiAgICpcbiAgICogVXNlZCBvbmx5IGlmIGB2YWxpZGF0aW9uRGF0YWAgaXMgYW4gYXJyYXkgb2YgYHRmLlRlbnNvcmAgb2JqZWN0cywgaS5lLiwgbm90XG4gICAqIGEgZGF0YXNldCBvYmplY3QuXG4gICAqXG4gICAqIElmIG5vdCBzcGVjaWZpZWQsIGl0cyB2YWx1ZSBkZWZhdWx0cyB0byAzMi5cbiAgICovXG4gIHZhbGlkYXRpb25CYXRjaFNpemU/OiBudW1iZXI7XG5cbiAgLyoqXG4gICAqIChPcHRpb25hbCkgT25seSByZWxldmFudCBpZiBgdmFsaWRhdGlvbkRhdGFgIGlzIHNwZWNpZmllZCBhbmQgaXMgYSBkYXRhc2V0XG4gICAqIG9iamVjdC5cbiAgICpcbiAgICogVG90YWwgbnVtYmVyIG9mIGJhdGNoZXMgb2Ygc2FtcGxlcyB0byBkcmF3IGZyb20gYHZhbGlkYXRpb25EYXRhYCBmb3JcbiAgICogdmFsaWRhdGlvbiBwdXJwb3NlIGJlZm9yZSBzdG9wcGluZyBhdCB0aGUgZW5kIG9mIGV2ZXJ5IGVwb2NoLiBJZiBub3RcbiAgICogc3BlY2lmaWVkLCBgZXZhbHVhdGVEYXRhc2V0YCB3aWxsIHVzZSBgaXRlcmF0b3IubmV4dCgpLmRvbmVgIGFzIHNpZ25hbCB0b1xuICAgKiBzdG9wIHZhbGlkYXRpb24uXG4gICAqL1xuICB2YWxpZGF0aW9uQmF0Y2hlcz86IG51bWJlcjtcblxuICAvKipcbiAgICogQ29uZmlndXJlcyB0aGUgZnJlcXVlbmN5IG9mIHlpZWxkaW5nIHRoZSBtYWluIHRocmVhZCB0byBvdGhlciB0YXNrcy5cbiAgICpcbiAgICogSW4gdGhlIGJyb3dzZXIgZW52aXJvbm1lbnQsIHlpZWxkaW5nIHRoZSBtYWluIHRocmVhZCBjYW4gaW1wcm92ZSB0aGVcbiAgICogcmVzcG9uc2l2ZW5lc3Mgb2YgdGhlIHBhZ2UgZHVyaW5nIHRyYWluaW5nLiBJbiB0aGUgTm9kZS5qcyBlbnZpcm9ubWVudCxcbiAgICogaXQgY2FuIGVuc3VyZSB0YXNrcyBxdWV1ZWQgaW4gdGhlIGV2ZW50IGxvb3AgY2FuIGJlIGhhbmRsZWQgaW4gYSB0aW1lbHlcbiAgICogbWFubmVyLlxuICAgKlxuICAgKiBUaGUgdmFsdWUgY2FuIGJlIG9uZSBvZiB0aGUgZm9sbG93aW5nOlxuICAgKiAgIC0gYCdhdXRvJ2A6IFRoZSB5aWVsZGluZyBoYXBwZW5zIGF0IGEgY2VydGFpbiBmcmFtZSByYXRlIChjdXJyZW50bHkgc2V0XG4gICAqICAgICAgICAgICAgICAgYXQgMTI1bXMpLiBUaGlzIGlzIHRoZSBkZWZhdWx0LlxuICAgKiAgIC0gYCdiYXRjaCdgOiB5aWVsZCBldmVyeSBiYXRjaC5cbiAgICogICAtIGAnZXBvY2gnYDogeWllbGQgZXZlcnkgZXBvY2guXG4gICAqICAgLSBhIGBudW1iZXJgOiBXaWxsIHlpZWxkIGV2ZXJ5IGBudW1iZXJgIG1pbGxpc2Vjb25kcy5cbiAgICogICAtIGAnbmV2ZXInYDogbmV2ZXIgeWllbGQuIChCdXQgeWllbGRpbmcgY2FuIHN0aWxsIGhhcHBlbiB0aHJvdWdoIGBhd2FpdFxuICAgKiAgICAgIG5leHRGcmFtZSgpYCBjYWxscyBpbiBjdXN0b20gY2FsbGJhY2tzLilcbiAgICovXG4gIHlpZWxkRXZlcnk/OiBZaWVsZEV2ZXJ5T3B0aW9ucztcblxuICAvKipcbiAgICogRXBvY2ggYXQgd2hpY2ggdG8gc3RhcnQgdHJhaW5pbmcgKHVzZWZ1bCBmb3IgcmVzdW1pbmcgYSBwcmV2aW91cyB0cmFpbmluZ1xuICAgKiBydW4pLiBXaGVuIHRoaXMgaXMgdXNlZCwgYGVwb2Noc2AgaXMgdGhlIGluZGV4IG9mIHRoZSBcImZpbmFsIGVwb2NoXCIuXG4gICAqIFRoZSBtb2RlbCBpcyBub3QgdHJhaW5lZCBmb3IgYSBudW1iZXIgb2YgaXRlcmF0aW9ucyBnaXZlbiBieSBgZXBvY2hzYCxcbiAgICogYnV0IG1lcmVseSB1bnRpbCB0aGUgZXBvY2ggb2YgaW5kZXggYGVwb2Noc2AgaXMgcmVhY2hlZC5cbiAgICovXG4gIGluaXRpYWxFcG9jaD86IG51bWJlcjtcblxuICAvKipcbiAgICogT3B0aW9uYWwgb2JqZWN0IG1hcHBpbmcgY2xhc3MgaW5kaWNlcyAoaW50ZWdlcnMpIHRvXG4gICAqIGEgd2VpZ2h0IChmbG9hdCkgdG8gYXBwbHkgdG8gdGhlIG1vZGVsJ3MgbG9zcyBmb3IgdGhlIHNhbXBsZXMgZnJvbSB0aGlzXG4gICAqIGNsYXNzIGR1cmluZyB0cmFpbmluZy4gVGhpcyBjYW4gYmUgdXNlZnVsIHRvIHRlbGwgdGhlIG1vZGVsIHRvIFwicGF5IG1vcmVcbiAgICogYXR0ZW50aW9uXCIgdG8gc2FtcGxlcyBmcm9tIGFuIHVuZGVyLXJlcHJlc2VudGVkIGNsYXNzLlxuICAgKlxuICAgKiBJZiB0aGUgbW9kZWwgaGFzIG11bHRpcGxlIG91dHB1dHMsIGEgY2xhc3Mgd2VpZ2h0IGNhbiBiZSBzcGVjaWZpZWQgZm9yXG4gICAqIGVhY2ggb2YgdGhlIG91dHB1dHMgYnkgc2V0dGluZyB0aGlzIGZpZWxkIGFuIGFycmF5IG9mIHdlaWdodCBvYmplY3RcbiAgICogb3IgYW4gb2JqZWN0IHRoYXQgbWFwcyBtb2RlbCBvdXRwdXQgbmFtZXMgKGUuZy4sIGBtb2RlbC5vdXRwdXROYW1lc1swXWApXG4gICAqIHRvIHdlaWdodCBvYmplY3RzLlxuICAgKi9cbiAgY2xhc3NXZWlnaHQ/OiBDbGFzc1dlaWdodHxDbGFzc1dlaWdodFtdfENsYXNzV2VpZ2h0TWFwO1xufVxuXG5leHBvcnQgaW50ZXJmYWNlIEZpdERhdGFzZXRFbGVtZW50IHtcbiAgeHM6IFRlbnNvck9yQXJyYXlPck1hcDtcbiAgeXM6IFRlbnNvck9yQXJyYXlPck1hcDtcbn1cblxuLyoqXG4gKiBJbnRlcmZhY2UgZm9yIGNvbmZpZ3VyaW5nIG1vZGVsIGV2YWx1YXRpb24gYmFzZWQgb24gYSBkYXRhc2V0IG9iamVjdC5cbiAqL1xuZXhwb3J0IGludGVyZmFjZSBNb2RlbEV2YWx1YXRlRGF0YXNldEFyZ3Mge1xuICAvKipcbiAgICogTnVtYmVyIG9mIGJhdGNoZXMgdG8gZHJhdyBmcm9tIHRoZSBkYXRhc2V0IG9iamVjdCBiZWZvcmUgZW5kaW5nIHRoZVxuICAgKiBldmFsdWF0aW9uLlxuICAgKi9cbiAgYmF0Y2hlcz86IG51bWJlcjtcblxuICAvKipcbiAgICogVmVyYm9zaXR5IG1vZGUuXG4gICAqL1xuICB2ZXJib3NlPzogTW9kZWxMb2dnaW5nVmVyYm9zaXR5O1xufVxuXG4vLyBEZWZhdWx0IGJhdGNoIHNpemUgdXNlZCBkdXJpbmcgdGVuc29yLWJhc2VkIHZhbGlkYXRpb24uXG5jb25zdCBERUZBVUxUX1ZBTElEQVRJT05fQkFUQ0hfU0laRSA9IDMyO1xuXG4vKipcbiAqIFN0YW5kYXJkaXplIHRoZSBvdXRwdXQgb2YgYSBkYXRhc2V0IGl0ZXJhdG9yIGZvciB1c2UgYnlcbiAqIExheWVyc01vZGVsLmZpdERhdGFzZXQoKS5cbiAqXG4gKiBAcGFyYW0gbW9kZWw6IEEgYHRmLkxheWVyc01vZGVsYCBvYmplY3QuXG4gKiBAcGFyYW0gaXRlcmF0b3JPdXQgVGhlIG91dHB1dCBvZiBhIGRhdGFzZXQgaXRlcmF0b3IuIEl0IGlzIHJlcXVpcmVkIHRvIGJlXG4gKiAgIGFuIG9iamVjdCBvZiB0aGUgZm9ybSBge3hzOiBUZW5zb3JPckFycmF5T3JNYXAsIHlzOlxuICogVGVuc29yT3JBcnJheU9yTWFwfWAsIHdoZXJlIGBUZW5zb3JPckFycmF5T3JNYXBgIGlzIGEgc2luZ2xlIGB0Zi5UZW5zb3JgLFxuICogYSBgdGYuVGVuc29yW11gLCBvciBhIGZsYXQgbWFwIGZyb20gc3RyaW5nIG5hbWVzIHRvIGB0Zi5UZW5zb3Jgcy5cbiAqIEByZXR1cm5zIEEgZmxhdCBhcnJheSBvZiBgdGYuVGVuc29yYCBvYmplY3RzOiB0aGUgaW5wdXQgYHRmLlRlbnNvcmBzXG4gKiAgIGZvbGxvd2VkIGJ5IHRoZSB0YXJnZXQgYHRmLlRlbnNvcmBzLiAgV2hlbiBgdGYuVGVuc29yYHMgYXJlIHByb3ZpZGVkXG4gKiAgIGFzIGEgbWFwLCB0aGUgb3JkZXIgaW4gdGhlIHJlc3VsdGluZyBhcnJheSBpcyB0YWtlbiBmcm9tIHRoZSBgaW5wdXROYW1lc2BcbiAqICAgYW5kIGBvdXRwdXROYW1lc2Agb2YgdGhlIG1vZGVsLlxuICovXG5mdW5jdGlvbiBzdGFuZGFyZGl6ZURhdGFJdGVyYXRvck91dHB1dChcbiAgICAvLyBUeXBlIGBtb2RlbGAgYXMgYGFueWAgaGVyZSB0byBhdm9pZCBjaXJjdWxhciBkZXBlbmRlbmN5IHcvXG4gICAgLy8gdHJhaW5pbmcudHMuXG4gICAgLy8gdHNsaW50OmRpc2FibGUtbmV4dC1saW5lOm5vLWFueVxuICAgIG1vZGVsOiBhbnksIGl0ZXJhdG9yT3V0OiB7fSk6IHt4czogdGZjLlRlbnNvcltdLCB5czogdGZjLlRlbnNvcltdfSB7XG4gIGxldCB4czogVGVuc29yT3JBcnJheU9yTWFwO1xuICBsZXQgeXM6IFRlbnNvck9yQXJyYXlPck1hcDtcblxuICBjb25zdCBpdGVyYXRvck91dE9iaiA9IGl0ZXJhdG9yT3V0IGFzIEZpdERhdGFzZXRFbGVtZW50O1xuICB4cyA9IGl0ZXJhdG9yT3V0T2JqWyd4cyddO1xuICB5cyA9IGl0ZXJhdG9yT3V0T2JqWyd5cyddO1xuICB0ZmMudXRpbC5hc3NlcnQoXG4gICAgICB4cyAhPSBudWxsICYmIHlzICE9IG51bGwsXG4gICAgICAoKSA9PiAnQSBEYXRhc2V0IGl0ZXJhdG9yIGZvciBmaXREYXRhc2V0KCkgaXMgZXhwZWN0ZWQgdG8gZ2VuZXJhdGUgJyArXG4gICAgICAgICAgJ29iamVjdHMgb2YgdGhlIGZvcm0gYHt4czogeFZhbCwgeXM6IHlWYWx9YCwgd2hlcmUgdGhlIHR3byAnICtcbiAgICAgICAgICAndmFsdWVzIG1heSBiZSBgdGYuVGVuc29yYCwgYW4gYXJyYXkgb2YgVGVuc29ycywgb3IgYSBtYXAgb2YgJyArXG4gICAgICAgICAgJ3N0cmluZyB0byBUZW5zb3IuICBUaGUgcHJvdmlkZWQgRGF0YXNldCBpbnN0ZWFkIGdlbmVyYXRlcyAnICtcbiAgICAgICAgICBgJHtpdGVyYXRvck91dH1gKTtcblxuICBjb25zdCBmbGF0dGVuZWRYczogdGZjLlRlbnNvcltdID1cbiAgICAgIGZsYXR0ZW5UZW5zb3JPckFycmF5T3JNYXAoJ2lucHV0JywgbW9kZWwuaW5wdXROYW1lcywgeHMpO1xuICBjb25zdCBmbGF0dGVuZWRZczogdGZjLlRlbnNvcltdID1cbiAgICAgIGZsYXR0ZW5UZW5zb3JPckFycmF5T3JNYXAoJ291dHB1dCcsIG1vZGVsLm91dHB1dE5hbWVzLCB5cyk7XG5cbiAgY29uc3QgYmF0Y2hTaXplOiBudW1iZXIgPSBmbGF0dGVuZWRYc1swXS5zaGFwZVswXTtcblxuICB0ZmMudXRpbC5hc3NlcnQoXG4gICAgICBmbGF0dGVuZWRYcy5sZW5ndGggPT09IG1vZGVsLmlucHV0cy5sZW5ndGgsXG4gICAgICAoKSA9PiBgTGF5ZXJzTW9kZWwgaGFzICR7bW9kZWwuaW5wdXRzLmxlbmd0aH0gaW5wdXRzLCBidXQgdGhlIGRhdGFzZXQgYCArXG4gICAgICAgICAgYHByb3ZpZGVzICR7ZmxhdHRlbmVkWHMubGVuZ3RofSBpbnB1dHMuICAoRXhwZWN0ZWQgaW5wdXQga2V5czogYCArXG4gICAgICAgICAgYCR7SlNPTi5zdHJpbmdpZnkobW9kZWwuaW5wdXROYW1lcyl9KWApO1xuXG4gIHRmYy51dGlsLmFzc2VydChcbiAgICAgIGZsYXR0ZW5lZFlzLmxlbmd0aCA9PT0gbW9kZWwub3V0cHV0cy5sZW5ndGgsXG4gICAgICAoKSA9PlxuICAgICAgICAgIGBMYXllcnNNb2RlbCBoYXMgJHttb2RlbC5vdXRwdXRzLmxlbmd0aH0gb3V0cHV0cywgYnV0IHRoZSBkYXRhc2V0IGAgK1xuICAgICAgICAgIGBwcm92aWRlcyAke2ZsYXR0ZW5lZFlzLmxlbmd0aH0gb3V0cHV0cy4gIChFeHBlY3RlZCBvdXRwdXQga2V5czogYCArXG4gICAgICAgICAgYCR7SlNPTi5zdHJpbmdpZnkobW9kZWwub3V0cHV0TmFtZXMpfSlgKTtcblxuICBmb3IgKGxldCB4SW5kZXggPSAwOyB4SW5kZXggPCBmbGF0dGVuZWRYcy5sZW5ndGg7IHhJbmRleCsrKSB7XG4gICAgdGZjLnV0aWwuYXNzZXJ0KFxuICAgICAgICBmbGF0dGVuZWRYc1t4SW5kZXhdLnNoYXBlWzBdID09PSBiYXRjaFNpemUsXG4gICAgICAgICgpID0+IGBCYXRjaCBzaXplIG1pc21hdGNoOiBpbnB1dCBgICtcbiAgICAgICAgICAgIGAke21vZGVsLmlucHV0TmFtZXNbeEluZGV4XX0gaGFzICR7XG4gICAgICAgICAgICAgICAgICBmbGF0dGVuZWRYc1t4SW5kZXhdLnNoYXBlWzBdfTsgYCArXG4gICAgICAgICAgICBgZXhwZWN0ZWQgICR7YmF0Y2hTaXplfSBiYXNlZCBvbiBpbnB1dCAke21vZGVsLmlucHV0TmFtZXNbMF19LmApO1xuICB9XG5cbiAgZm9yIChsZXQgeUluZGV4ID0gMDsgeUluZGV4IDwgZmxhdHRlbmVkWXMubGVuZ3RoOyB5SW5kZXgrKykge1xuICAgIHRmYy51dGlsLmFzc2VydChcbiAgICAgICAgZmxhdHRlbmVkWXNbeUluZGV4XS5zaGFwZVswXSA9PT0gYmF0Y2hTaXplLFxuICAgICAgICAoKSA9PiBgQmF0Y2ggc2l6ZSBtaXNtYXRjaDogb3V0cHV0IGAgK1xuICAgICAgICAgICAgYCR7bW9kZWwub3V0cHV0TmFtZXNbeUluZGV4XX0gaGFzICR7XG4gICAgICAgICAgICAgICAgICBmbGF0dGVuZWRZc1t5SW5kZXhdLnNoYXBlWzBdfTsgYCArXG4gICAgICAgICAgICBgZXhwZWN0ZWQgICR7YmF0Y2hTaXplfSBiYXNlZCBvbiBpbnB1dCAke21vZGVsLmlucHV0TmFtZXNbMF19LmApO1xuICB9XG5cbiAgcmV0dXJuIHt4czogZmxhdHRlbmVkWHMsIHlzOiBmbGF0dGVuZWRZc307XG59XG5cbmZ1bmN0aW9uIGZsYXR0ZW5UZW5zb3JPckFycmF5T3JNYXAoXG4gICAgaW5wdXRPck91dHB1dDogc3RyaW5nLCBuYW1lczogc3RyaW5nW10sIHZhbHVlczogVGVuc29yT3JBcnJheU9yTWFwKSB7XG4gIGlmICh2YWx1ZXMgaW5zdGFuY2VvZiB0ZmMuVGVuc29yKSB7XG4gICAgcmV0dXJuIFt2YWx1ZXNdO1xuICB9IGVsc2UgaWYgKEFycmF5LmlzQXJyYXkodmFsdWVzKSkge1xuICAgIHRmYy51dGlsLmFzc2VydChcbiAgICAgICAgdmFsdWVzLmxlbmd0aCA9PT0gbmFtZXMubGVuZ3RoLFxuICAgICAgICAoKSA9PiBgUmVjZWl2ZWQgYW4gYXJyYXkgb2YgJHt2YWx1ZXMubGVuZ3RofSBUZW5zb3JzLCBidXQgZXhwZWN0ZWQgJHtcbiAgICAgICAgICAgIG5hbWVzLmxlbmd0aH0gdG8gbWF0Y2ggdGhlICR7aW5wdXRPck91dHB1dH0ga2V5cyAke25hbWVzfS5gKTtcbiAgICByZXR1cm4gdmFsdWVzO1xuICB9IGVsc2Uge1xuICAgIGNvbnN0IHJlc3VsdDogdGZjLlRlbnNvcltdID0gW107XG4gICAgLy8gQ2hlY2sgdGhhdCBhbGwgdGhlIHJlcXVpcmVkIGtleXMgYXJlIGF2YWlsYWJsZS5cbiAgICBmb3IgKGNvbnN0IG5hbWUgb2YgbmFtZXMpIHtcbiAgICAgIGlmICh2YWx1ZXNbbmFtZV0gPT0gbnVsbCkge1xuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgIGBUaGUgZmVhdHVyZSBkYXRhIGdlbmVyYXRlZCBieSB0aGUgZGF0YXNldCBsYWNrcyB0aGUgcmVxdWlyZWQgYCArXG4gICAgICAgICAgICBgJHtpbnB1dE9yT3V0cHV0fSBrZXkgJyR7bmFtZX0nLmApO1xuICAgICAgfVxuICAgICAgcmVzdWx0LnB1c2godmFsdWVzW25hbWVdKTtcbiAgICB9XG4gICAgcmV0dXJuIHJlc3VsdDtcbiAgfVxufVxuXG5mdW5jdGlvbiBzdGFuZGFyZGl6ZVRlbnNvclZhbGlkYXRpb25EYXRhPFQ+KFxuICAgIGRhdGE6XG4gICAgICAgIFtcbiAgICAgICAgICB0ZmMuVGVuc29yfHRmYy5UZW5zb3JbXSwgdGZjLlRlbnNvcnx0ZmMuVGVuc29yW11cbiAgICAgICAgXXxbdGZjLlRlbnNvciB8IHRmYy5UZW5zb3JbXSwgdGZjLlRlbnNvciB8IHRmYy5UZW5zb3JbXSxcbiAgICAgICAgICAgdGZjLlRlbnNvciB8IHRmYy5UZW5zb3JbXV0pOlxuICAgIHt4czogdGZjLlRlbnNvcnx0ZmMuVGVuc29yW10sIHlzOiB0ZmMuVGVuc29yfHRmYy5UZW5zb3JbXX0ge1xuICBpZiAoZGF0YS5sZW5ndGggPT09IDMpIHtcbiAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgJ1ZhbGlkYXRpb24gd2l0aCBzYW1wbGUgd2VpZ2h0cyBpcyBub3QgaW1wbGVtZW50ZWQgeWV0LicpO1xuICB9XG4gIHJldHVybiB7eHM6IGRhdGFbMF0sIHlzOiBkYXRhWzFdfTtcbn1cblxuZXhwb3J0IGFzeW5jIGZ1bmN0aW9uIGZpdERhdGFzZXQ8VD4oXG4gICAgLy8gVHlwZSBgbW9kZWxgIGFzIGBhbnlgIGhlcmUgdG8gYXZvaWQgY2lyY3VsYXIgZGVwZW5kZW5jeSB3L1xuICAgIC8vIHRyYWluaW5nLnRzLlxuICAgIC8vIHRzbGludDpkaXNhYmxlLW5leHQtbGluZTpuby1hbnlcbiAgICBtb2RlbDogYW55LCBkYXRhc2V0OiBEYXRhc2V0PFQ+LFxuICAgIGFyZ3M6IE1vZGVsRml0RGF0YXNldEFyZ3M8VD4pOiBQcm9taXNlPEhpc3Rvcnk+IHtcbiAgY29uc3QgaGFzQmF0Y2hlc1BlckVwb2NoID0gYXJncy5iYXRjaGVzUGVyRXBvY2ggIT0gbnVsbDtcbiAgdGZjLnV0aWwuYXNzZXJ0KFxuICAgICAgbW9kZWwub3B0aW1pemVyICE9IG51bGwsXG4gICAgICAoKSA9PiAnWW91IG11c3QgY29tcGlsZSBhIG1vZGVsIGJlZm9yZSB0cmFpbmluZy90ZXN0aW5nLiBVc2UgJyArXG4gICAgICAgICAgJ0xheWVyc01vZGVsLmNvbXBpbGUobW9kZWxDb21waWxlQ29uZmlnKS4nKTtcblxuICB0ZmMudXRpbC5hc3NlcnQoXG4gICAgICBhcmdzICE9IG51bGwsXG4gICAgICAoKSA9PiBgRm9yIGZpdERhdGFzZXQoKSwgdGhlIDJuZCBhcmd1bWVudCAoY29uZmlnKSBpcyByZXF1aXJlZCwgYCArXG4gICAgICAgICAgYGJ1dCBpdCBpcyBub3QgcHJvdmlkZWQgaW4gdGhpcyBjYWxsLmApO1