@tensorflow/tfjs-data
Version:
TensorFlow Data API in JavaScript
1,588 lines (1,455 loc) • 173 kB
JavaScript
/**
* @license
* Copyright 2024 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs-core';
import { util, env, tensor, tensor1d, tensor2d, browser, tidy, expandDims, cast, image, reshape } from '@tensorflow/tfjs-core';
var commonjsGlobal = typeof globalThis !== 'undefined' ? globalThis : typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};
function getAugmentedNamespace(n) {
if (n.__esModule) return n;
var f = n.default;
if (typeof f == "function") {
var a = function a () {
if (this instanceof a) {
var args = [null];
args.push.apply(args, arguments);
var Ctor = Function.bind.apply(f, args);
return new Ctor();
}
return f.apply(this, arguments);
};
a.prototype = f.prototype;
} else a = {};
Object.defineProperty(a, '__esModule', {value: true});
Object.keys(n).forEach(function (k) {
var d = Object.getOwnPropertyDescriptor(n, k);
Object.defineProperty(a, k, d.get ? d : {
enumerable: true,
get: function () {
return n[k];
}
});
});
return a;
}
var alea$1 = {exports: {}};
(function (module) {
// A port of an algorithm by Johannes Baagøe <baagoe@baagoe.com>, 2010
// http://baagoe.com/en/RandomMusings/javascript/
// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror
// Original work is under MIT license -
// Copyright (C) 2010 by Johannes Baagøe <baagoe@baagoe.org>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
(function(global, module, define) {
function Alea(seed) {
var me = this, mash = Mash();
me.next = function() {
var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32
me.s0 = me.s1;
me.s1 = me.s2;
return me.s2 = t - (me.c = t | 0);
};
// Apply the seeding algorithm from Baagoe.
me.c = 1;
me.s0 = mash(' ');
me.s1 = mash(' ');
me.s2 = mash(' ');
me.s0 -= mash(seed);
if (me.s0 < 0) { me.s0 += 1; }
me.s1 -= mash(seed);
if (me.s1 < 0) { me.s1 += 1; }
me.s2 -= mash(seed);
if (me.s2 < 0) { me.s2 += 1; }
mash = null;
}
function copy(f, t) {
t.c = f.c;
t.s0 = f.s0;
t.s1 = f.s1;
t.s2 = f.s2;
return t;
}
function impl(seed, opts) {
var xg = new Alea(seed),
state = opts && opts.state,
prng = xg.next;
prng.int32 = function() { return (xg.next() * 0x100000000) | 0; };
prng.double = function() {
return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53
};
prng.quick = prng;
if (state) {
if (typeof(state) == 'object') copy(state, xg);
prng.state = function() { return copy(xg, {}); };
}
return prng;
}
function Mash() {
var n = 0xefc8249d;
var mash = function(data) {
data = String(data);
for (var i = 0; i < data.length; i++) {
n += data.charCodeAt(i);
var h = 0.02519603282416938 * n;
n = h >>> 0;
h -= n;
h *= n;
n = h >>> 0;
h -= n;
n += h * 0x100000000; // 2^32
}
return (n >>> 0) * 2.3283064365386963e-10; // 2^-32
};
return mash;
}
if (module && module.exports) {
module.exports = impl;
} else if (define && define.amd) {
define(function() { return impl; });
} else {
this.alea = impl;
}
})(
commonjsGlobal,
module, // present in node.js
(typeof undefined) == 'function' // present with an AMD loader
);
} (alea$1));
var aleaExports = alea$1.exports;
var xor128$1 = {exports: {}};
(function (module) {
// A Javascript implementaion of the "xor128" prng algorithm by
// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper
(function(global, module, define) {
function XorGen(seed) {
var me = this, strseed = '';
me.x = 0;
me.y = 0;
me.z = 0;
me.w = 0;
// Set up generator function.
me.next = function() {
var t = me.x ^ (me.x << 11);
me.x = me.y;
me.y = me.z;
me.z = me.w;
return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);
};
if (seed === (seed | 0)) {
// Integer seed.
me.x = seed;
} else {
// String seed.
strseed += seed;
}
// Mix in string seed, then discard an initial batch of 64 values.
for (var k = 0; k < strseed.length + 64; k++) {
me.x ^= strseed.charCodeAt(k) | 0;
me.next();
}
}
function copy(f, t) {
t.x = f.x;
t.y = f.y;
t.z = f.z;
t.w = f.w;
return t;
}
function impl(seed, opts) {
var xg = new XorGen(seed),
state = opts && opts.state,
prng = function() { return (xg.next() >>> 0) / 0x100000000; };
prng.double = function() {
do {
var top = xg.next() >>> 11,
bot = (xg.next() >>> 0) / 0x100000000,
result = (top + bot) / (1 << 21);
} while (result === 0);
return result;
};
prng.int32 = xg.next;
prng.quick = prng;
if (state) {
if (typeof(state) == 'object') copy(state, xg);
prng.state = function() { return copy(xg, {}); };
}
return prng;
}
if (module && module.exports) {
module.exports = impl;
} else if (define && define.amd) {
define(function() { return impl; });
} else {
this.xor128 = impl;
}
})(
commonjsGlobal,
module, // present in node.js
(typeof undefined) == 'function' // present with an AMD loader
);
} (xor128$1));
var xor128Exports = xor128$1.exports;
var xorwow$1 = {exports: {}};
(function (module) {
// A Javascript implementaion of the "xorwow" prng algorithm by
// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper
(function(global, module, define) {
function XorGen(seed) {
var me = this, strseed = '';
// Set up generator function.
me.next = function() {
var t = (me.x ^ (me.x >>> 2));
me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;
return (me.d = (me.d + 362437 | 0)) +
(me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;
};
me.x = 0;
me.y = 0;
me.z = 0;
me.w = 0;
me.v = 0;
if (seed === (seed | 0)) {
// Integer seed.
me.x = seed;
} else {
// String seed.
strseed += seed;
}
// Mix in string seed, then discard an initial batch of 64 values.
for (var k = 0; k < strseed.length + 64; k++) {
me.x ^= strseed.charCodeAt(k) | 0;
if (k == strseed.length) {
me.d = me.x << 10 ^ me.x >>> 4;
}
me.next();
}
}
function copy(f, t) {
t.x = f.x;
t.y = f.y;
t.z = f.z;
t.w = f.w;
t.v = f.v;
t.d = f.d;
return t;
}
function impl(seed, opts) {
var xg = new XorGen(seed),
state = opts && opts.state,
prng = function() { return (xg.next() >>> 0) / 0x100000000; };
prng.double = function() {
do {
var top = xg.next() >>> 11,
bot = (xg.next() >>> 0) / 0x100000000,
result = (top + bot) / (1 << 21);
} while (result === 0);
return result;
};
prng.int32 = xg.next;
prng.quick = prng;
if (state) {
if (typeof(state) == 'object') copy(state, xg);
prng.state = function() { return copy(xg, {}); };
}
return prng;
}
if (module && module.exports) {
module.exports = impl;
} else if (define && define.amd) {
define(function() { return impl; });
} else {
this.xorwow = impl;
}
})(
commonjsGlobal,
module, // present in node.js
(typeof undefined) == 'function' // present with an AMD loader
);
} (xorwow$1));
var xorwowExports = xorwow$1.exports;
var xorshift7$1 = {exports: {}};
(function (module) {
// A Javascript implementaion of the "xorshift7" algorithm by
// François Panneton and Pierre L'ecuyer:
// "On the Xorgshift Random Number Generators"
// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf
(function(global, module, define) {
function XorGen(seed) {
var me = this;
// Set up generator function.
me.next = function() {
// Update xor generator.
var X = me.x, i = me.i, t, v;
t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);
t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);
t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);
t = X[(i + 4) & 7]; v ^= t ^ (t << 7);
t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);
X[i] = v;
me.i = (i + 1) & 7;
return v;
};
function init(me, seed) {
var j, X = [];
if (seed === (seed | 0)) {
// Seed state array using a 32-bit integer.
X[0] = seed;
} else {
// Seed state using a string.
seed = '' + seed;
for (j = 0; j < seed.length; ++j) {
X[j & 7] = (X[j & 7] << 15) ^
(seed.charCodeAt(j) + X[(j + 1) & 7] << 13);
}
}
// Enforce an array length of 8, not all zeroes.
while (X.length < 8) X.push(0);
for (j = 0; j < 8 && X[j] === 0; ++j);
if (j == 8) X[7] = -1; else X[j];
me.x = X;
me.i = 0;
// Discard an initial 256 values.
for (j = 256; j > 0; --j) {
me.next();
}
}
init(me, seed);
}
function copy(f, t) {
t.x = f.x.slice();
t.i = f.i;
return t;
}
function impl(seed, opts) {
if (seed == null) seed = +(new Date);
var xg = new XorGen(seed),
state = opts && opts.state,
prng = function() { return (xg.next() >>> 0) / 0x100000000; };
prng.double = function() {
do {
var top = xg.next() >>> 11,
bot = (xg.next() >>> 0) / 0x100000000,
result = (top + bot) / (1 << 21);
} while (result === 0);
return result;
};
prng.int32 = xg.next;
prng.quick = prng;
if (state) {
if (state.x) copy(state, xg);
prng.state = function() { return copy(xg, {}); };
}
return prng;
}
if (module && module.exports) {
module.exports = impl;
} else if (define && define.amd) {
define(function() { return impl; });
} else {
this.xorshift7 = impl;
}
})(
commonjsGlobal,
module, // present in node.js
(typeof undefined) == 'function' // present with an AMD loader
);
} (xorshift7$1));
var xorshift7Exports = xorshift7$1.exports;
var xor4096$1 = {exports: {}};
(function (module) {
// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.
//
// This fast non-cryptographic random number generator is designed for
// use in Monte-Carlo algorithms. It combines a long-period xorshift
// generator with a Weyl generator, and it passes all common batteries
// of stasticial tests for randomness while consuming only a few nanoseconds
// for each prng generated. For background on the generator, see Brent's
// paper: "Some long-period random number generators using shifts and xors."
// http://arxiv.org/pdf/1004.3115v1.pdf
//
// Usage:
//
// var xor4096 = require('xor4096');
// random = xor4096(1); // Seed with int32 or string.
// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.
// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.
//
// For nonzero numeric keys, this impelementation provides a sequence
// identical to that by Brent's xorgens 3 implementaion in C. This
// implementation also provides for initalizing the generator with
// string seeds, or for saving and restoring the state of the generator.
//
// On Chrome, this prng benchmarks about 2.1 times slower than
// Javascript's built-in Math.random().
(function(global, module, define) {
function XorGen(seed) {
var me = this;
// Set up generator function.
me.next = function() {
var w = me.w,
X = me.X, i = me.i, t, v;
// Update Weyl generator.
me.w = w = (w + 0x61c88647) | 0;
// Update xor generator.
v = X[(i + 34) & 127];
t = X[i = ((i + 1) & 127)];
v ^= v << 13;
t ^= t << 17;
v ^= v >>> 15;
t ^= t >>> 12;
// Update Xor generator array state.
v = X[i] = v ^ t;
me.i = i;
// Result is the combination.
return (v + (w ^ (w >>> 16))) | 0;
};
function init(me, seed) {
var t, v, i, j, w, X = [], limit = 128;
if (seed === (seed | 0)) {
// Numeric seeds initialize v, which is used to generates X.
v = seed;
seed = null;
} else {
// String seeds are mixed into v and X one character at a time.
seed = seed + '\0';
v = 0;
limit = Math.max(limit, seed.length);
}
// Initialize circular array and weyl value.
for (i = 0, j = -32; j < limit; ++j) {
// Put the unicode characters into the array, and shuffle them.
if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);
// After 32 shuffles, take v as the starting w value.
if (j === 0) w = v;
v ^= v << 10;
v ^= v >>> 15;
v ^= v << 4;
v ^= v >>> 13;
if (j >= 0) {
w = (w + 0x61c88647) | 0; // Weyl.
t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.
i = (0 == t) ? i + 1 : 0; // Count zeroes.
}
}
// We have detected all zeroes; make the key nonzero.
if (i >= 128) {
X[(seed && seed.length || 0) & 127] = -1;
}
// Run the generator 512 times to further mix the state before using it.
// Factoring this as a function slows the main generator, so it is just
// unrolled here. The weyl generator is not advanced while warming up.
i = 127;
for (j = 4 * 128; j > 0; --j) {
v = X[(i + 34) & 127];
t = X[i = ((i + 1) & 127)];
v ^= v << 13;
t ^= t << 17;
v ^= v >>> 15;
t ^= t >>> 12;
X[i] = v ^ t;
}
// Storing state as object members is faster than using closure variables.
me.w = w;
me.X = X;
me.i = i;
}
init(me, seed);
}
function copy(f, t) {
t.i = f.i;
t.w = f.w;
t.X = f.X.slice();
return t;
}
function impl(seed, opts) {
if (seed == null) seed = +(new Date);
var xg = new XorGen(seed),
state = opts && opts.state,
prng = function() { return (xg.next() >>> 0) / 0x100000000; };
prng.double = function() {
do {
var top = xg.next() >>> 11,
bot = (xg.next() >>> 0) / 0x100000000,
result = (top + bot) / (1 << 21);
} while (result === 0);
return result;
};
prng.int32 = xg.next;
prng.quick = prng;
if (state) {
if (state.X) copy(state, xg);
prng.state = function() { return copy(xg, {}); };
}
return prng;
}
if (module && module.exports) {
module.exports = impl;
} else if (define && define.amd) {
define(function() { return impl; });
} else {
this.xor4096 = impl;
}
})(
commonjsGlobal, // window object or global
module, // present in node.js
(typeof undefined) == 'function' // present with an AMD loader
);
} (xor4096$1));
var xor4096Exports = xor4096$1.exports;
var tychei$1 = {exports: {}};
(function (module) {
// A Javascript implementaion of the "Tyche-i" prng algorithm by
// Samuel Neves and Filipe Araujo.
// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf
(function(global, module, define) {
function XorGen(seed) {
var me = this, strseed = '';
// Set up generator function.
me.next = function() {
var b = me.b, c = me.c, d = me.d, a = me.a;
b = (b << 25) ^ (b >>> 7) ^ c;
c = (c - d) | 0;
d = (d << 24) ^ (d >>> 8) ^ a;
a = (a - b) | 0;
me.b = b = (b << 20) ^ (b >>> 12) ^ c;
me.c = c = (c - d) | 0;
me.d = (d << 16) ^ (c >>> 16) ^ a;
return me.a = (a - b) | 0;
};
/* The following is non-inverted tyche, which has better internal
* bit diffusion, but which is about 25% slower than tyche-i in JS.
me.next = function() {
var a = me.a, b = me.b, c = me.c, d = me.d;
a = (me.a + me.b | 0) >>> 0;
d = me.d ^ a; d = d << 16 ^ d >>> 16;
c = me.c + d | 0;
b = me.b ^ c; b = b << 12 ^ d >>> 20;
me.a = a = a + b | 0;
d = d ^ a; me.d = d = d << 8 ^ d >>> 24;
me.c = c = c + d | 0;
b = b ^ c;
return me.b = (b << 7 ^ b >>> 25);
}
*/
me.a = 0;
me.b = 0;
me.c = 2654435769 | 0;
me.d = 1367130551;
if (seed === Math.floor(seed)) {
// Integer seed.
me.a = (seed / 0x100000000) | 0;
me.b = seed | 0;
} else {
// String seed.
strseed += seed;
}
// Mix in string seed, then discard an initial batch of 64 values.
for (var k = 0; k < strseed.length + 20; k++) {
me.b ^= strseed.charCodeAt(k) | 0;
me.next();
}
}
function copy(f, t) {
t.a = f.a;
t.b = f.b;
t.c = f.c;
t.d = f.d;
return t;
}
function impl(seed, opts) {
var xg = new XorGen(seed),
state = opts && opts.state,
prng = function() { return (xg.next() >>> 0) / 0x100000000; };
prng.double = function() {
do {
var top = xg.next() >>> 11,
bot = (xg.next() >>> 0) / 0x100000000,
result = (top + bot) / (1 << 21);
} while (result === 0);
return result;
};
prng.int32 = xg.next;
prng.quick = prng;
if (state) {
if (typeof(state) == 'object') copy(state, xg);
prng.state = function() { return copy(xg, {}); };
}
return prng;
}
if (module && module.exports) {
module.exports = impl;
} else if (define && define.amd) {
define(function() { return impl; });
} else {
this.tychei = impl;
}
})(
commonjsGlobal,
module, // present in node.js
(typeof undefined) == 'function' // present with an AMD loader
);
} (tychei$1));
var tycheiExports = tychei$1.exports;
var seedrandom$1 = {exports: {}};
var _nodeResolve_empty = {};
var _nodeResolve_empty$1 = {
__proto__: null,
default: _nodeResolve_empty
};
var require$$0 = /*@__PURE__*/getAugmentedNamespace(_nodeResolve_empty$1);
/*
Copyright 2019 David Bau.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
(function (module) {
(function (global, pool, math) {
//
// The following constants are related to IEEE 754 limits.
//
var width = 256, // each RC4 output is 0 <= x < 256
chunks = 6, // at least six RC4 outputs for each double
digits = 52, // there are 52 significant digits in a double
rngname = 'random', // rngname: name for Math.random and Math.seedrandom
startdenom = math.pow(width, chunks),
significance = math.pow(2, digits),
overflow = significance * 2,
mask = width - 1,
nodecrypto; // node.js crypto module, initialized at the bottom.
//
// seedrandom()
// This is the seedrandom function described above.
//
function seedrandom(seed, options, callback) {
var key = [];
options = (options == true) ? { entropy: true } : (options || {});
// Flatten the seed string or build one from local entropy if needed.
var shortseed = mixkey(flatten(
options.entropy ? [seed, tostring(pool)] :
(seed == null) ? autoseed() : seed, 3), key);
// Use the seed to initialize an ARC4 generator.
var arc4 = new ARC4(key);
// This function returns a random double in [0, 1) that contains
// randomness in every bit of the mantissa of the IEEE 754 value.
var prng = function() {
var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48
d = startdenom, // and denominator d = 2 ^ 48.
x = 0; // and no 'extra last byte'.
while (n < significance) { // Fill up all significant digits by
n = (n + x) * width; // shifting numerator and
d *= width; // denominator and generating a
x = arc4.g(1); // new least-significant-byte.
}
while (n >= overflow) { // To avoid rounding up, before adding
n /= 2; // last byte, shift everything
d /= 2; // right using integer math until
x >>>= 1; // we have exactly the desired bits.
}
return (n + x) / d; // Form the number within [0, 1).
};
prng.int32 = function() { return arc4.g(4) | 0; };
prng.quick = function() { return arc4.g(4) / 0x100000000; };
prng.double = prng;
// Mix the randomness into accumulated entropy.
mixkey(tostring(arc4.S), pool);
// Calling convention: what to return as a function of prng, seed, is_math.
return (options.pass || callback ||
function(prng, seed, is_math_call, state) {
if (state) {
// Load the arc4 state from the given state if it has an S array.
if (state.S) { copy(state, arc4); }
// Only provide the .state method if requested via options.state.
prng.state = function() { return copy(arc4, {}); };
}
// If called as a method of Math (Math.seedrandom()), mutate
// Math.random because that is how seedrandom.js has worked since v1.0.
if (is_math_call) { math[rngname] = prng; return seed; }
// Otherwise, it is a newer calling convention, so return the
// prng directly.
else return prng;
})(
prng,
shortseed,
'global' in options ? options.global : (this == math),
options.state);
}
//
// ARC4
//
// An ARC4 implementation. The constructor takes a key in the form of
// an array of at most (width) integers that should be 0 <= x < (width).
//
// The g(count) method returns a pseudorandom integer that concatenates
// the next (count) outputs from ARC4. Its return value is a number x
// that is in the range 0 <= x < (width ^ count).
//
function ARC4(key) {
var t, keylen = key.length,
me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];
// The empty key [] is treated as [0].
if (!keylen) { key = [keylen++]; }
// Set up S using the standard key scheduling algorithm.
while (i < width) {
s[i] = i++;
}
for (i = 0; i < width; i++) {
s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];
s[j] = t;
}
// The "g" method returns the next (count) outputs as one number.
(me.g = function(count) {
// Using instance members instead of closure state nearly doubles speed.
var t, r = 0,
i = me.i, j = me.j, s = me.S;
while (count--) {
t = s[i = mask & (i + 1)];
r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];
}
me.i = i; me.j = j;
return r;
// For robust unpredictability, the function call below automatically
// discards an initial batch of values. This is called RC4-drop[256].
// See http://google.com/search?q=rsa+fluhrer+response&btnI
})(width);
}
//
// copy()
// Copies internal state of ARC4 to or from a plain object.
//
function copy(f, t) {
t.i = f.i;
t.j = f.j;
t.S = f.S.slice();
return t;
}
//
// flatten()
// Converts an object tree to nested arrays of strings.
//
function flatten(obj, depth) {
var result = [], typ = (typeof obj), prop;
if (depth && typ == 'object') {
for (prop in obj) {
try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}
}
}
return (result.length ? result : typ == 'string' ? obj : obj + '\0');
}
//
// mixkey()
// Mixes a string seed into a key that is an array of integers, and
// returns a shortened string seed that is equivalent to the result key.
//
function mixkey(seed, key) {
var stringseed = seed + '', smear, j = 0;
while (j < stringseed.length) {
key[mask & j] =
mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));
}
return tostring(key);
}
//
// autoseed()
// Returns an object for autoseeding, using window.crypto and Node crypto
// module if available.
//
function autoseed() {
try {
var out;
if (nodecrypto && (out = nodecrypto.randomBytes)) {
// The use of 'out' to remember randomBytes makes tight minified code.
out = out(width);
} else {
out = new Uint8Array(width);
(global.crypto || global.msCrypto).getRandomValues(out);
}
return tostring(out);
} catch (e) {
var browser = global.navigator,
plugins = browser && browser.plugins;
return [+new Date, global, plugins, global.screen, tostring(pool)];
}
}
//
// tostring()
// Converts an array of charcodes to a string
//
function tostring(a) {
return String.fromCharCode.apply(0, a);
}
//
// When seedrandom.js is loaded, we immediately mix a few bits
// from the built-in RNG into the entropy pool. Because we do
// not want to interfere with deterministic PRNG state later,
// seedrandom will not call math.random on its own again after
// initialization.
//
mixkey(math.random(), pool);
//
// Nodejs and AMD support: export the implementation as a module using
// either convention.
//
if (module.exports) {
module.exports = seedrandom;
// When in node.js, try using crypto package for autoseeding.
try {
nodecrypto = require$$0;
} catch (ex) {}
} else {
// When included as a plain script, set up Math.seedrandom global.
math['seed' + rngname] = seedrandom;
}
// End anonymous scope, and pass initial values.
})(
// global: `self` in browsers (including strict mode and web workers),
// otherwise `this` in Node and other environments
(typeof self !== 'undefined') ? self : commonjsGlobal,
[], // pool: entropy pool starts empty
Math // math: package containing random, pow, and seedrandom
);
} (seedrandom$1));
var seedrandomExports = seedrandom$1.exports;
// A library of seedable RNGs implemented in Javascript.
//
// Usage:
//
// var seedrandom = require('seedrandom');
// var random = seedrandom(1); // or any seed.
// var x = random(); // 0 <= x < 1. Every bit is random.
// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.
// alea, a 53-bit multiply-with-carry generator by Johannes Baagøe.
// Period: ~2^116
// Reported to pass all BigCrush tests.
var alea = aleaExports;
// xor128, a pure xor-shift generator by George Marsaglia.
// Period: 2^128-1.
// Reported to fail: MatrixRank and LinearComp.
var xor128 = xor128Exports;
// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.
// Period: 2^192-2^32
// Reported to fail: CollisionOver, SimpPoker, and LinearComp.
var xorwow = xorwowExports;
// xorshift7, by François Panneton and Pierre L'ecuyer, takes
// a different approach: it adds robustness by allowing more shifts
// than Marsaglia's original three. It is a 7-shift generator
// with 256 bits, that passes BigCrush with no systmatic failures.
// Period 2^256-1.
// No systematic BigCrush failures reported.
var xorshift7 = xorshift7Exports;
// xor4096, by Richard Brent, is a 4096-bit xor-shift with a
// very long period that also adds a Weyl generator. It also passes
// BigCrush with no systematic failures. Its long period may
// be useful if you have many generators and need to avoid
// collisions.
// Period: 2^4128-2^32.
// No systematic BigCrush failures reported.
var xor4096 = xor4096Exports;
// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random
// number generator derived from ChaCha, a modern stream cipher.
// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf
// Period: ~2^127
// No systematic BigCrush failures reported.
var tychei = tycheiExports;
// The original ARC4-based prng included in this library.
// Period: ~2^1600
var sr = seedrandomExports;
sr.alea = alea;
sr.xor128 = xor128;
sr.xorwow = xorwow;
sr.xorshift7 = xorshift7;
sr.xor4096 = xor4096;
sr.tychei = tychei;
var seedrandom = sr;
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* Apply a mapping function to a nested structure in a recursive manner.
*
* The result of the mapping is an object with the same nested structure (i.e.,
* of arrays and dicts) as the input, except that some subtrees are replaced,
* according to the results of the mapping function.
*
* Mappings are memoized. Thus, if the nested structure contains the same
* object in multiple positions, the output will contain the same mapped object
* in those positions. Cycles are not supported, however.
*
* @param input: The object to which to apply the mapping function.
* @param mapFn: A function that expects a single node of the object tree, and
* returns a `DeepMapResult`. The `DeepMapResult` either provides a
* replacement value for that node (i.e., replacing the subtree), or indicates
* that the node should be processed recursively.
*/
function deepMap(input, mapFn) {
return deepMapInternal(input, mapFn);
}
/**
* @param seen: A Map of known object mappings (i.e., memoized results of
* `mapFn()`)
* @param containedIn: An set containing objects on the reference path currently
* being processed (used to detect cycles).
*/
function deepMapInternal(input, mapFn, seen = new Map(), containedIn = new Set()) {
if (input == null) {
return null;
}
if (typeof Blob === 'function' && input instanceof Blob) {
return input.slice();
}
if (containedIn.has(input)) {
throw new Error('Circular references are not supported.');
}
if (seen.has(input)) {
return seen.get(input);
}
const result = mapFn(input);
if (result.recurse && result.value !== null) {
throw new Error('A deep map function may not return both a value and recurse=true.');
}
if (!result.recurse) {
seen.set(input, result.value);
return result.value;
}
else if (isIterable(input)) {
// tslint:disable-next-line:no-any
const mappedIterable = Array.isArray(input) ? [] : {};
containedIn.add(input);
for (const k in input) {
const child = input[k];
const childResult = deepMapInternal(child, mapFn, seen, containedIn);
mappedIterable[k] = childResult;
}
containedIn.delete(input);
if (input.__proto__) {
mappedIterable.__proto__ = input.__proto__;
}
return mappedIterable;
}
else {
throw new Error(`Can't recurse into non-iterable type: ${input}`);
}
}
// TODO(soergel, kangyizhang) Reconsider naming of deepZip() to avoid confusion
// with zip()
/**
* Zip nested structures together in a recursive manner.
*
* This has the effect of transposing or pivoting data, e.g. converting it from
* a row-major representation to a column-major representation.
*
* For example, `deepZip([{a: 1, b: 2}, {a: 3, b: 4}])` returns
* `{a: [1, 3], b: [2, 4]}`.
*
* The inputs should all have the same nested structure (i.e., of arrays and
* dicts). The result is a single object with the same nested structure, where
* the leaves are arrays collecting the values of the inputs at that location
* (or, optionally, the result of a custom function applied to those arrays).
*
* @param inputs: An array of the objects to zip together.
* @param zipFn: (optional) A function that expects an array of elements at a
* single node of the object tree, and returns a `DeepMapResult`. The
* `DeepMapResult` either provides a result value for that node (i.e.,
* representing the subtree), or indicates that the node should be processed
* recursively. The default zipFn recurses as far as possible and places
* arrays at the leaves.
*/
function deepZip(inputs, zipFn = zipToList) {
return deepZipInternal(inputs, zipFn);
}
/**
* @param containedIn: An set containing objects on the reference path currently
* being processed (used to detect cycles).
*/
function deepZipInternal(inputs, zipFn, containedIn = new Set()) {
// The recursion follows the structure of input 0; it's assumed that all the
// other inputs have the same structure.
const input = inputs[0];
if (containedIn.has(input)) {
throw new Error('Circular references are not supported.');
}
const result = zipFn(inputs);
if (result.recurse && result.value !== null) {
throw new Error('A deep zip function may not return both a value and recurse=true.');
}
if (!result.recurse) {
return result.value;
}
else if (isIterable(input)) {
// tslint:disable-next-line:no-any
const mappedIterable = Array.isArray(input) ? [] : {};
containedIn.add(input);
for (const k in input) {
const children = inputs.map(x => x[k]);
const childResult = deepZipInternal(children, zipFn, containedIn);
mappedIterable[k] = childResult;
}
containedIn.delete(input);
return mappedIterable;
}
else {
throw new Error(`Can't recurse into non-iterable type: ${input}`);
}
}
// tslint:disable-next-line:no-any
function zipToList(x) {
if (x === null) {
return null;
}
// TODO(soergel): validate array type?
if (isIterable(x[0])) {
return { value: null, recurse: true };
}
else {
return { value: x, recurse: false };
}
}
/**
* Apply an async mapping function to a nested structure in a recursive manner.
*
* This first creates a nested structure of Promises, and then awaits all of
* those, resulting in a single Promise for a resolved nested structure.
*
* The result of the mapping is an object with the same nested structure (i.e.,
* of arrays and dicts) as the input, except that some subtrees are replaced,
* according to the results of the mapping function.
*
* Mappings are memoized. Thus, if the nested structure contains the same
* object in multiple positions, the output will contain the same mapped object
* in those positions. Cycles are not supported, however.
*
* @param input: The object to which to apply the mapping function.
* @param mapFn: A function that expects a single node of the object tree, and
* returns a `DeepMapAsyncResult`. The `DeepMapAsyncResult` either provides
* a `Promise` for a replacement value for that node (i.e., replacing the
* subtree), or indicates that the node should be processed recursively. Note
* that the decision whether or not to recurse must be made immediately; only
* the mapped value may be promised.
*/
async function deepMapAndAwaitAll(input, mapFn) {
const seen = new Map();
// First do a normal deepMap, collecting Promises in 'seen' as a side effect.
deepMapInternal(input, mapFn, seen);
// Replace the Promises in 'seen' in place.
// Note TypeScript provides no async map iteration, and regular map iteration
// is broken too, so sadly we have to do Array.from() to make it work.
// (There's no advantage to Promise.all(), and that would be tricky anyway.)
for (const key of Array.from(seen.keys())) {
const value = seen.get(key);
if (tf.util.isPromise(value)) {
const mappedValue = await value;
seen.set(key, mappedValue);
}
}
// Normal deepMap again, this time filling in the resolved values.
// It's unfortunate that we have to do two passes.
// TODO(soergel): test performance and think harder about a fast solution.
const result = deepMapInternal(input, mapFn, seen);
return result;
}
/**
* Determine whether the argument is iterable.
*
* @returns true if the argument is an array or any non-Tensor object.
*/
// tslint:disable-next-line:no-any
function isIterable(obj) {
let isTextDecoder = false;
if (tf.env().get('IS_BROWSER')) {
isTextDecoder = obj instanceof TextDecoder;
}
else {
// tslint:disable-next-line:no-require-imports
const { StringDecoder } = require('string_decoder');
isTextDecoder = obj instanceof StringDecoder;
}
return obj != null && (!ArrayBuffer.isView(obj)) &&
(Array.isArray(obj) ||
(typeof obj === 'object' && !(obj instanceof tf.Tensor) &&
!(obj instanceof Promise) && !isTextDecoder));
}
/**
* Determine whether the argument can be converted to Tensor.
*
* Tensors, primitives, arrays, and TypedArrays all qualify; anything else does
* not.
*
* @returns true if the argument can be converted to Tensor.
*/
// tslint:disable-next-line:no-any
function canTensorify(obj) {
return obj == null || isPrimitive(obj) || Array.isArray(obj) ||
(typeof obj === 'object' && (obj instanceof tf.Tensor)) ||
tf.util.isTypedArray(obj);
}
/**
* Returns true if the given `value` is a primitive type. Otherwise returns
* false. This is equivalant to node util.isPrimitive
*/
function isPrimitive(value) {
return (value === null ||
(typeof value !== 'object' && typeof value !== 'function'));
}
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
function deepClone(container) {
return deepMap(container, cloneIfTensor);
}
// tslint:disable-next-line: no-any
function cloneIfTensor(item) {
if (item instanceof tf.Tensor) {
return ({ value: item.clone(), recurse: false });
}
else if (isIterable(item)) {
return { value: null, recurse: true };
}
else {
return { value: item, recurse: false };
}
}
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* A ring buffer, providing O(1) FIFO, LIFO, and related operations.
*/
class RingBuffer {
/**
* Constructs a `RingBuffer`.
* @param capacity The number of items that the buffer can accomodate.
*/
constructor(capacity) {
this.capacity = capacity;
// Note we store the indices in the range 0 <= index < 2*capacity.
// This allows us to distinguish the full from the empty case.
// See https://www.snellman.net/blog/archive/2016-12-13-ring-buffers/
this.begin = 0; // inclusive
this.end = 0; // exclusive
if (capacity == null) {
throw new RangeError('Can\'t create a ring buffer of unknown capacity.');
}
if (capacity < 1) {
throw new RangeError('Can\'t create ring buffer of capacity < 1.');
}
this.data = new Array(capacity);
this.doubledCapacity = 2 * capacity;
}
/**
* Map any index into the range 0 <= index < 2*capacity.
*/
wrap(index) {
// don't trust % on negative numbers
while (index < 0) {
index += this.doubledCapacity;
}
return index % this.doubledCapacity;
}
get(index) {
if (index < 0) {
throw new RangeError('Can\'t get item at a negative index.');
}
return this.data[index % this.capacity];
}
set(index, value) {
if (index < 0) {
throw new RangeError('Can\'t set item at a negative index.');
}
this.data[index % this.capacity] = value;
}
/**
* Returns the current number of items in the buffer.
*/
length() {
let length = this.end - this.begin;
if (length < 0) {
length = this.doubledCapacity + length;
}
return length;
}
/**
* Reports whether the buffer is full.
* @returns true if the number of items in the buffer equals its capacity, and
* false otherwise.
*/
isFull() {
return this.length() === this.capacity;
}
/**
* Reports whether the buffer is empty.
* @returns true if the number of items in the buffer equals zero, and
* false otherwise.
*/
isEmpty() {
return this.length() === 0;
}
/**
* Adds an item to the end of the buffer.
*/
push(value) {
if (this.isFull()) {
throw new RangeError('Ring buffer is full.');
}
this.set(this.end, value);
this.end = this.wrap(this.end + 1);
}
/**
* Adds many items to the end of the buffer, in order.
*/
pushAll(values) {
for (const value of values) {
this.push(value);
}
}
/**
* Removes and returns the last item in the buffer.
*/
pop() {
if (this.isEmpty()) {
throw new RangeError('Ring buffer is empty.');
}
this.end = this.wrap(this.end - 1);
const result = this.get(this.end);
this.set(this.end, undefined);
return result;
}
/**
* Adds an item to the beginning of the buffer.
*/
unshift(value) {
if (this.isFull()) {
throw new RangeError('Ring buffer is full.');
}
this.begin = this.wrap(this.begin - 1);
this.set(this.begin, value);
}
/**
* Removes and returns the first item in the buffer.
*/
shift() {
if (this.isEmpty()) {
throw new RangeError('Ring buffer is empty.');
}
const result = this.get(this.begin);
this.set(this.begin, undefined);
this.begin = this.wrap(this.begin + 1);
return result;
}
/**
* Removes and returns a specific item in the buffer, and moves the last item
* to the vacated slot. This is useful for implementing a shuffling stream.
* Note that this operation necessarily scrambles the original order.
*
* @param relativeIndex: the index of the item to remove, relative to the
* first item in the buffer (e.g., hiding the ring nature of the underlying
* storage).
*/
shuffleExcise(relativeIndex) {
if (this.isEmpty()) {
throw new RangeError('Ring buffer is empty.');
}
const index = this.wrap(this.begin + relativeIndex);
const result = this.get(index);
this.set(index, this.pop());
return result;
}
}
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
class GrowingRingBuffer extends RingBuffer {
/**
* Constructs a `GrowingRingBuffer`.
*/
constructor() {
super(GrowingRingBuffer.INITIAL_CAPACITY);
}
isFull() {
return false;
}
push(value) {
if (super.isFull()) {
this.expand();
}
super.push(value);
}
unshift(value) {
if (super.isFull()) {
this.expand();
}
super.unshift(value);
}
/**
* Doubles the capacity of the buffer.
*/
expand() {
const newCapacity = this.capacity * 2;
const newData = new Array(newCapacity);
const len = this.length();
// Rotate the buffer to start at index 0 again, since we can't just
// allocate more space at the end.
for (let i = 0; i < len; i++) {
newData[i] = this.get(this.wrap(this.begin + i));
}
this.data = newData;
this.capacity = newCapacity;
this.doubledCapacity = 2 * this.capacity;
this.begin = 0;
this.end = len;
}
}
GrowingRingBuffer.INITIAL_CAPACITY = 32;
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
// Here we implement a simple asynchronous iterator.
// This lets us avoid using either third-party stream libraries or
// recent TypeScript language support requiring polyfills.
/**
* Create a `LazyIterator` from an array of items.
*/
function iteratorFromItems(items) {
return new ArrayIterator(items);
}
/**
* Create a `LazyIterator` from a function.
*
* ```js
* let i = -1;
* const func = () =>
* ++i < 5 ? {value: i, done: false} : {value: null, done: true};
* const iter = tf.data.iteratorFromFunction(func);
* await iter.forEachAsync(e => console.log(e));
* ```
*
* @param func A function that produces data on each call.
*/
function iteratorFromFunction(func) {
return new FunctionCallIterator(func);
}
/**
* Create a `LazyIterator` by concatenating underlying streams, which are
* themselves provided as a stream.
*
* This can also be thought of as a "stream flatten" operation.
*
* @param baseIterators A stream of streams to be concatenated.
* @param baseErrorHandler An optional function that can intercept `Error`s
* raised during a `next()` call on the base stream. This function can decide
* whether the error should be propagated, whether the error should be
* ignored, or whether the base stream should be terminated.
*/
function iteratorFromConcatenated(baseIterators, baseErrorHandler) {
return new Chai