@tensorflow/tfjs-data
Version:
TensorFlow Data API in JavaScript
254 lines (253 loc) • 8.8 kB
TypeScript
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-data/dist/readers" />
import { TensorContainer } from '@tensorflow/tfjs-core';
import { Dataset } from './dataset';
import { CSVDataset } from './datasets/csv_dataset';
import { MicrophoneIterator } from './iterators/microphone_iterator';
import { WebcamIterator } from './iterators/webcam_iterator';
import { CSVConfig, MicrophoneConfig, WebcamConfig } from './types';
/**
* Create a `CSVDataset` by reading and decoding CSV file(s) from provided URL
* or local path if it's in Node environment.
*
* Note: If isLabel in columnConfigs is `true` for at least one column, the
* element in returned `CSVDataset` will be an object of
* `{xs:features, ys:labels}`: xs is a dict of features key/value pairs, ys
* is a dict of labels key/value pairs. If no column is marked as label,
* returns a dict of features only.
*
* ```js
* const csvUrl =
* 'https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/boston-housing-train.csv';
*
* async function run() {
* // We want to predict the column "medv", which represents a median value of
* // a home (in $1000s), so we mark it as a label.
* const csvDataset = tf.data.csv(
* csvUrl, {
* columnConfigs: {
* medv: {
* isLabel: true
* }
* }
* });
*
* // Number of features is the number of column names minus one for the label
* // column.
* const numOfFeatures = (await csvDataset.columnNames()).length - 1;
*
* // Prepare the Dataset for training.
* const flattenedDataset =
* csvDataset
* .map(({xs, ys}) =>
* {
* // Convert xs(features) and ys(labels) from object form (keyed by
* // column name) to array form.
* return {xs:Object.values(xs), ys:Object.values(ys)};
* })
* .batch(10);
*
* // Define the model.
* const model = tf.sequential();
* model.add(tf.layers.dense({
* inputShape: [numOfFeatures],
* units: 1
* }));
* model.compile({
* optimizer: tf.train.sgd(0.000001),
* loss: 'meanSquaredError'
* });
*
* // Fit the model using the prepared Dataset
* return model.fitDataset(flattenedDataset, {
* epochs: 10,
* callbacks: {
* onEpochEnd: async (epoch, logs) => {
* console.log(epoch + ':' + logs.loss);
* }
* }
* });
* }
*
* await run();
* ```
*
* @param source URL or local path to get CSV file. If it's a local path, it
* must have prefix `file://` and it only works in node environment.
* @param csvConfig (Optional) A CSVConfig object that contains configurations
* of reading and decoding from CSV file(s).
*
* @doc {
* heading: 'Data',
* subheading: 'Creation',
* namespace: 'data',
* configParamIndices: [1]
* }
*/
export declare function csv(source: RequestInfo, csvConfig?: CSVConfig): CSVDataset;
/**
* Create a `Dataset` that produces each element by calling a provided function.
*
* Note that repeated iterations over this `Dataset` may produce different
* results, because the function will be called anew for each element of each
* iteration.
*
* Also, beware that the sequence of calls to this function may be out of order
* in time with respect to the logical order of the Dataset. This is due to the
* asynchronous lazy nature of stream processing, and depends on downstream
* transformations (e.g. .shuffle()). If the provided function is pure, this is
* no problem, but if it is a closure over a mutable state (e.g., a traversal
* pointer), then the order of the produced elements may be scrambled.
*
* ```js
* let i = -1;
* const func = () =>
* ++i < 5 ? {value: i, done: false} : {value: null, done: true};
* const ds = tf.data.func(func);
* await ds.forEachAsync(e => console.log(e));
* ```
*
* @param f A function that produces one data element on each call.
*/
export declare function func<T extends TensorContainer>(f: () => IteratorResult<T> | Promise<IteratorResult<T>>): Dataset<T>;
/**
* Create a `Dataset` that produces each element from provided JavaScript
* generator, which is a function that returns a (potentially async) iterator.
*
* For more information on iterators and generators, see
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators .
* For the iterator protocol, see
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols .
*
* Example of creating a dataset from an iterator factory:
* ```js
* function makeIterator() {
* const numElements = 10;
* let index = 0;
*
* const iterator = {
* next: () => {
* let result;
* if (index < numElements) {
* result = {value: index, done: false};
* index++;
* return result;
* }
* return {value: index, done: true};
* }
* };
* return iterator;
* }
* const ds = tf.data.generator(makeIterator);
* await ds.forEachAsync(e => console.log(e));
* ```
*
* Example of creating a dataset from a generator:
* ```js
* function* dataGenerator() {
* const numElements = 10;
* let index = 0;
* while (index < numElements) {
* const x = index;
* index++;
* yield x;
* }
* }
*
* const ds = tf.data.generator(dataGenerator);
* await ds.forEachAsync(e => console.log(e));
* ```
*
* @param generator A JavaScript function that returns
* a (potentially async) JavaScript iterator.
*
* @doc {
* heading: 'Data',
* subheading: 'Creation',
* namespace: 'data',
* configParamIndices: [1]
* }
*/
export declare function generator<T extends TensorContainer>(generator: () => Iterator<T> | Promise<Iterator<T>> | AsyncIterator<T>): Dataset<T>;
/**
* Create an iterator that generates `Tensor`s from webcam video stream. This
* API only works in Browser environment when the device has webcam.
*
* Note: this code snippet only works when the device has a webcam. It will
* request permission to open the webcam when running.
* ```js
* const videoElement = document.createElement('video');
* videoElement.width = 100;
* videoElement.height = 100;
* const cam = await tf.data.webcam(videoElement);
* const img = await cam.capture();
* img.print();
* cam.stop();
* ```
*
* @param webcamVideoElement A `HTMLVideoElement` used to play video from
* webcam. If this element is not provided, a hidden `HTMLVideoElement` will
* be created. In that case, `resizeWidth` and `resizeHeight` must be
* provided to set the generated tensor shape.
* @param webcamConfig A `WebcamConfig` object that contains configurations of
* reading and manipulating data from webcam video stream.
*
* @doc {
* heading: 'Data',
* subheading: 'Creation',
* namespace: 'data',
* ignoreCI: true
* }
*/
export declare function webcam(webcamVideoElement?: HTMLVideoElement, webcamConfig?: WebcamConfig): Promise<WebcamIterator>;
/**
* Create an iterator that generates frequency-domain spectrogram `Tensor`s from
* microphone audio stream with browser's native FFT. This API only works in
* browser environment when the device has microphone.
*
* Note: this code snippet only works when the device has a microphone. It will
* request permission to open the microphone when running.
* ```js
* const mic = await tf.data.microphone({
* fftSize: 1024,
* columnTruncateLength: 232,
* numFramesPerSpectrogram: 43,
* sampleRateHz:44100,
* includeSpectrogram: true,
* includeWaveform: true
* });
* const audioData = await mic.capture();
* const spectrogramTensor = audioData.spectrogram;
* spectrogramTensor.print();
* const waveformTensor = audioData.waveform;
* waveformTensor.print();
* mic.stop();
* ```
*
* @param microphoneConfig A `MicrophoneConfig` object that contains
* configurations of reading audio data from microphone.
*
* @doc {
* heading: 'Data',
* subheading: 'Creation',
* namespace: 'data',
* ignoreCI: true
* }
*/
export declare function microphone(microphoneConfig?: MicrophoneConfig): Promise<MicrophoneIterator>;