UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

1,140 lines 342 kB
/** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import * as tf from './index'; import { ALL_ENVS, describeWithFlags, SYNC_BACKEND_ENVS } from './jasmine_util'; import { tensor5d } from './ops/ops'; import { Tensor } from './tensor'; import { encodeStrings, expectArraysClose, expectArraysEqual, expectNumbersClose } from './test_util'; import { encodeString } from './util'; describeWithFlags('tensor', ALL_ENVS, () => { it('Tensors of arbitrary size', async () => { // [1, 2, 3] let t = tf.tensor1d([1, 2, 3]); expect(t.rank).toBe(1); expect(t.size).toBe(3); expectArraysClose(await t.data(), [1, 2, 3]); // [[1, 2, 3]] t = tf.tensor2d([1, 2, 3], [1, 3]); expect(t.rank).toBe(2); expect(t.size).toBe(3); expectArraysClose(await t.data(), [1, 2, 3]); // [[1, 2, 3], // [4, 5, 6]] t = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); expect(t.rank).toBe(2); expect(t.size).toBe(6); expectArraysClose(await t.data(), [1, 2, 3, 4, 5, 6]); // Shape mismatch with the values. expect(() => tf.tensor2d([1], [1, 2])).toThrowError(); }); it('Tensors of explicit size', async () => { const t = tf.tensor1d([5, 3, 2]); expect(t.rank).toBe(1); expect(t.shape).toEqual([3]); // tslint:disable-next-line:no-any expect(() => tf.tensor3d([1, 2], [1, 2, 3, 5])).toThrowError(); const t4 = tf.tensor4d([1, 2, 3, 4], [1, 2, 1, 2]); expectArraysClose(await t4.data(), [1, 2, 3, 4]); // Tensor of ones. const x = tf.ones([3, 4, 2]); expect(x.rank).toBe(3); expect(x.size).toBe(24); expectArraysClose(await x.data(), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]); // Tensor of zeros. const z = tf.zeros([3, 4, 2]); expect(z.rank).toBe(3); expect(z.size).toBe(24); expectArraysClose(await z.data(), [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]); }); it('Tensor dataSync CPU --> GPU', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); expectArraysClose(await a.data(), new Float32Array([1, 2, 3, 4, 5, 6])); }); it('Tensor.data() CPU --> GPU', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); expectArraysClose(await a.data(), new Float32Array([1, 2, 3, 4, 5, 6])); }); it('Tensor.data() packed CPU --> GPU', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); tf.matMul(a, tf.tensor2d([1, 2], [2, 1])); expectArraysClose(await a.data(), new Float32Array([1, 2, 3, 4, 5, 6])); }); it('Scalar basic methods', async () => { const a = tf.scalar(5); expectArraysClose(await a.data(), [5]); expect(a.rank).toBe(0); expect(a.size).toBe(1); expect(a.shape).toEqual([]); }); it('indexToLoc Scalar', async () => { const a = await tf.scalar(0).buffer(); expect(a.indexToLoc(0)).toEqual([]); const b = await tf.zeros([]).buffer(); expect(b.indexToLoc(0)).toEqual([]); }); it('indexToLoc Tensor1D', async () => { const a = await tf.zeros([3]).buffer(); expect(a.indexToLoc(0)).toEqual([0]); expect(a.indexToLoc(1)).toEqual([1]); expect(a.indexToLoc(2)).toEqual([2]); const b = await tf.zeros([3]).buffer(); expect(b.indexToLoc(0)).toEqual([0]); expect(b.indexToLoc(1)).toEqual([1]); expect(b.indexToLoc(2)).toEqual([2]); }); it('indexToLoc Tensor2D', async () => { const a = await tf.zeros([3, 2]).buffer(); expect(a.indexToLoc(0)).toEqual([0, 0]); expect(a.indexToLoc(1)).toEqual([0, 1]); expect(a.indexToLoc(2)).toEqual([1, 0]); expect(a.indexToLoc(3)).toEqual([1, 1]); expect(a.indexToLoc(4)).toEqual([2, 0]); expect(a.indexToLoc(5)).toEqual([2, 1]); const b = await tf.zeros([3, 2]).buffer(); expect(b.indexToLoc(0)).toEqual([0, 0]); expect(b.indexToLoc(1)).toEqual([0, 1]); expect(b.indexToLoc(2)).toEqual([1, 0]); expect(b.indexToLoc(3)).toEqual([1, 1]); expect(b.indexToLoc(4)).toEqual([2, 0]); expect(b.indexToLoc(5)).toEqual([2, 1]); }); it('indexToLoc Tensor3D', async () => { const a = await tf.zeros([3, 2, 2]).buffer(); expect(a.indexToLoc(0)).toEqual([0, 0, 0]); expect(a.indexToLoc(1)).toEqual([0, 0, 1]); expect(a.indexToLoc(2)).toEqual([0, 1, 0]); expect(a.indexToLoc(3)).toEqual([0, 1, 1]); expect(a.indexToLoc(4)).toEqual([1, 0, 0]); expect(a.indexToLoc(5)).toEqual([1, 0, 1]); expect(a.indexToLoc(11)).toEqual([2, 1, 1]); const b = await tf.zeros([3, 2, 2]).buffer(); expect(b.indexToLoc(0)).toEqual([0, 0, 0]); expect(b.indexToLoc(1)).toEqual([0, 0, 1]); expect(b.indexToLoc(2)).toEqual([0, 1, 0]); expect(b.indexToLoc(3)).toEqual([0, 1, 1]); expect(b.indexToLoc(4)).toEqual([1, 0, 0]); expect(b.indexToLoc(5)).toEqual([1, 0, 1]); expect(b.indexToLoc(11)).toEqual([2, 1, 1]); }); it('indexToLoc Tensor 5D', async () => { const values = new Float32Array([1, 2, 3, 4]); const a = await tensor5d(values, [2, 1, 1, 1, 2]).buffer(); expect(a.indexToLoc(0)).toEqual([0, 0, 0, 0, 0]); expect(a.indexToLoc(1)).toEqual([0, 0, 0, 0, 1]); expect(a.indexToLoc(2)).toEqual([1, 0, 0, 0, 0]); expect(a.indexToLoc(3)).toEqual([1, 0, 0, 0, 1]); }); it('locToIndex Scalar', async () => { const a = await tf.scalar(0).buffer(); expect(a.locToIndex([])).toEqual(0); const b = await tf.zeros([]).buffer(); expect(b.locToIndex([])).toEqual(0); }); it('locToIndex Tensor1D', async () => { const a = await tf.zeros([3]).buffer(); expect(a.locToIndex([0])).toEqual(0); expect(a.locToIndex([1])).toEqual(1); expect(a.locToIndex([2])).toEqual(2); const b = await tf.zeros([3]).buffer(); expect(b.locToIndex([0])).toEqual(0); expect(b.locToIndex([1])).toEqual(1); expect(b.locToIndex([2])).toEqual(2); }); it('locToIndex Tensor2D', async () => { const a = await tf.zeros([3, 2]).buffer(); expect(a.locToIndex([0, 0])).toEqual(0); expect(a.locToIndex([0, 1])).toEqual(1); expect(a.locToIndex([1, 0])).toEqual(2); expect(a.locToIndex([1, 1])).toEqual(3); expect(a.locToIndex([2, 0])).toEqual(4); expect(a.locToIndex([2, 1])).toEqual(5); const b = await tf.zeros([3, 2]).buffer(); expect(b.locToIndex([0, 0])).toEqual(0); expect(b.locToIndex([0, 1])).toEqual(1); expect(b.locToIndex([1, 0])).toEqual(2); expect(b.locToIndex([1, 1])).toEqual(3); expect(b.locToIndex([2, 0])).toEqual(4); expect(b.locToIndex([2, 1])).toEqual(5); }); it('locToIndex Tensor3D', async () => { const a = await tf.zeros([3, 2, 2]).buffer(); expect(a.locToIndex([0, 0, 0])).toEqual(0); expect(a.locToIndex([0, 0, 1])).toEqual(1); expect(a.locToIndex([0, 1, 0])).toEqual(2); expect(a.locToIndex([0, 1, 1])).toEqual(3); expect(a.locToIndex([1, 0, 0])).toEqual(4); expect(a.locToIndex([1, 0, 1])).toEqual(5); expect(a.locToIndex([2, 1, 1])).toEqual(11); const b = await tf.zeros([3, 2, 2]).buffer(); expect(b.locToIndex([0, 0, 0])).toEqual(0); expect(b.locToIndex([0, 0, 1])).toEqual(1); expect(b.locToIndex([0, 1, 0])).toEqual(2); expect(b.locToIndex([0, 1, 1])).toEqual(3); expect(b.locToIndex([1, 0, 0])).toEqual(4); expect(b.locToIndex([1, 0, 1])).toEqual(5); expect(b.locToIndex([2, 1, 1])).toEqual(11); }); it('Tensor assignability (asserts compiler)', () => { // This test asserts compilation, not doing any run-time assertion. const a = null; const b = a; expect(b).toBeNull(); const a1 = null; const b1 = a1; expect(b1).toBeNull(); const a2 = null; const b2 = a2; expect(b2).toBeNull(); const a3 = null; const b3 = a3; expect(b3).toBeNull(); const a4 = null; const b4 = a4; expect(b4).toBeNull(); }); it('tf.tensor1d() from number[]', async () => { const a = tf.tensor1d([1, 2, 3]); expectArraysClose(await a.data(), [1, 2, 3]); }); it('tf.tensor1d() throw error with null input value', () => { expect(() => tf.tensor1d(null)) .toThrowError('The input to the tensor constructor ' + 'must be a non-null value.'); }); it('tf.tensor1d() from string[]', async () => { const a = tf.tensor1d(['aa', 'bb', 'cc']); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([3]); expectArraysEqual(await a.data(), ['aa', 'bb', 'cc']); }); it('tf.tensor1d() from encoded strings', async () => { const bytes = encodeStrings(['aa', 'bb', 'cc']); const a = tf.tensor1d(bytes, 'string'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([3]); expectArraysEqual(await a.data(), ['aa', 'bb', 'cc']); }); it('tf.tensor1d() from encoded strings without dtype errors', async () => { // We do not want to infer 'string' when the user passes Uint8Array in order // to be forward compatible in the future when we add uint8 dtype. const bytes = encodeStrings(['aa', 'bb', 'cc']); expect(() => tf.tensor1d(bytes)).toThrowError(); }); it('tf.tensor1d() from encoded strings, shape mismatch', () => { const bytes = encodeStrings([['aa'], ['bb'], ['cc']]); expect(() => tf.tensor1d(bytes)).toThrowError(); }); it('tf.tensor1d() from number[][], shape mismatch', () => { // tslint:disable-next-line:no-any expect(() => tf.tensor1d([[1], [2], [3]])).toThrowError(); }); it('tf.tensor1d() from string[][], shape mismatch', () => { // tslint:disable-next-line:no-any expect(() => tf.tensor1d([['a'], ['b'], ['c']])).toThrowError(); }); it('tf.tensor2d() from number[][]', async () => { const a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3]); expectArraysClose(await a.data(), [1, 2, 3, 4, 5, 6]); }); it('tf.tensor2d() from string[][]', async () => { const a = tf.tensor2d([['aa', 'bb'], ['cc', 'dd']]); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 2]); expectArraysEqual(await a.data(), ['aa', 'bb', 'cc', 'dd']); }); it('tf.tensor2d() from encoded strings', async () => { const bytes = encodeStrings([['aa', 'bb'], ['cc', 'dd']]); const a = tf.tensor2d(bytes, [2, 2], 'string'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 2]); expectArraysEqual(await a.data(), ['aa', 'bb', 'cc', 'dd']); }); it('tf.tensor2d() from encoded strings without dtype errors', async () => { // We do not want to infer 'string' when the user passes Uint8Array in order // to be forward compatible in the future when we add uint8 dtype. const bytes = encodeStrings([['aa', 'bb'], ['cc', 'dd']]); expect(() => tf.tensor2d(bytes)).toThrowError(); }); it('tf.tensor2d() from encoded strings, shape mismatch', () => { const bytes = encodeStrings([['aa', 'bb'], ['cc', 'dd']]); expect(() => tf.tensor2d(bytes, [3, 2], 'string')).toThrowError(); }); it('tf.tensor2d() requires shape to be of length 2', () => { // tslint:disable-next-line:no-any const shape = [4]; expect(() => tf.tensor2d([1, 2, 3, 4], shape)).toThrowError(); }); it('tf.tensor2d() from number[][], but shape does not match', () => { // Actual shape is [2, 3]. expect(() => tf.tensor2d([[1, 2, 3], [4, 5, 6]], [3, 2])).toThrowError(); }); it('tf.tensor2d() from string[][], but shape does not match', () => { // Actual shape is [2, 3]. const vals = [['a', 'b', 'c'], ['d', 'e', 'f']]; expect(() => tf.tensor2d(vals, [3, 2])).toThrowError(); }); it('tf.tensor2d() from number[], but no shape throws error', () => { expect(() => tf.tensor2d([1, 2, 3, 4])).toThrowError(); }); it('tf.tensor2d() from string[], but no shape throws error', () => { expect(() => tf.tensor2d(['a', 'b', 'c', 'd'])).toThrowError(); }); it('tf.tensor2d() throw error with null input value', () => { expect(() => tf.tensor2d(null)) .toThrowError('The input to the tensor constructor ' + 'must be a non-null value.'); }); it('tensor3d() from number[][][]', async () => { const a = tf.tensor3d([[[1], [2], [3]], [[4], [5], [6]]], [2, 3, 1]); expectArraysClose(await a.data(), [1, 2, 3, 4, 5, 6]); }); it('tensor3d() from string[][][]', async () => { const vals = [[['a'], ['b'], ['c']], [['d'], ['e'], ['f']]]; const a = tf.tensor3d(vals, [2, 3, 1]); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 3, 1]); expectArraysEqual(await a.data(), ['a', 'b', 'c', 'd', 'e', 'f']); }); it('tf.tensor3d() from encoded strings', async () => { const bytes = encodeStrings([[['a'], ['b'], ['c']], [['d'], ['e'], ['f']]]); const a = tf.tensor3d(bytes, [2, 3, 1], 'string'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 3, 1]); expectArraysEqual(await a.data(), ['a', 'b', 'c', 'd', 'e', 'f']); }); it('tf.tensor3d() from encoded strings without dtype errors', async () => { // We do not want to infer 'string' when the user passes Uint8Array in order // to be forward compatible in the future when we add uint8 dtype. const bytes = encodeStrings([[['a'], ['b'], ['c']], [['d'], ['e'], ['f']]]); expect(() => tf.tensor3d(bytes)).toThrowError(); }); it('tf.tensor3d() from encoded strings, shape mismatch', () => { const bytes = encodeStrings([[['a'], ['b'], ['c']], [['d'], ['e'], ['f']]]); // Actual shape is [2, 3, 1]. expect(() => tf.tensor3d(bytes, [3, 2, 1], 'string')) .toThrowError(); }); it('tensor3d() from number[][][], but shape does not match', () => { const values = [[[1], [2], [3]], [[4], [5], [6]]]; // Actual shape is [2, 3, 1]. expect(() => tf.tensor3d(values, [3, 2, 1])).toThrowError(); }); it('tf.tensor3d() from number[], but no shape throws error', () => { expect(() => tf.tensor3d([1, 2, 3, 4])).toThrowError(); }); it('tf.tensor3d() requires shape to be of length 3', () => { // tslint:disable-next-line:no-any const shape = [4, 1]; expect(() => tf.tensor3d([1, 2, 3, 4], shape)).toThrowError(); }); it('tf.tensor3d() throw error with null input value', () => { expect(() => tf.tensor3d(null)) .toThrowError('The input to the tensor constructor ' + 'must be a non-null value.'); }); it('tensor4d() from number[][][][]', async () => { const a = tf.tensor4d([[[[1]], [[2]]], [[[4]], [[5]]]], [2, 2, 1, 1]); expectArraysClose(await a.data(), [1, 2, 4, 5]); }); it('tensor4d() from string[][][][]', async () => { const vals = [[[['a']], [['b']]], [[['c']], [['d']]]]; const a = tf.tensor4d(vals, [2, 2, 1, 1]); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), ['a', 'b', 'c', 'd']); }); it('tf.tensor4d() from encoded strings', async () => { const bytes = encodeStrings([[[['a']], [['b']]], [[['c']], [['d']]]]); const a = tf.tensor4d(bytes, [2, 2, 1, 1], 'string'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), ['a', 'b', 'c', 'd']); }); it('tf.tensor4d() from encoded strings without dtype errors', async () => { // We do not want to infer 'string' when the user passes Uint8Array in order // to be forward compatible in the future when we add uint8 dtype. const bytes = encodeStrings([[[['a']], [['b']]], [[['c']], [['d']]]]); expect(() => tf.tensor4d(bytes)).toThrowError(); }); it('tf.tensor4d() from encoded strings, shape mismatch', () => { const bytes = encodeStrings([[[['a']], [['b']]], [[['c']], [['d']]]]); // Actual shape is [2, 2, 1. 1]. expect(() => tf.tensor4d(bytes, [2, 1, 2, 1], 'string')) .toThrowError(); }); it('tensor4d() from string[][][][] infer shape', async () => { const vals = [[[['a']], [['b']]], [[['c']], [['d']]]]; const a = tf.tensor4d(vals); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), ['a', 'b', 'c', 'd']); }); it('tensor4d() from number[][][][], but shape does not match', () => { const f = () => { // Actual shape is [2, 2, 1, 1]. tf.tensor4d([[[[1]], [[2]]], [[[4]], [[5]]]], [2, 1, 2, 1]); }; expect(f).toThrowError(); }); it('tf.tensor4d() from number[], but no shape throws error', () => { expect(() => tf.tensor4d([1, 2, 3, 4])).toThrowError(); }); it('tf.tensor4d() requires shape to be of length 4', () => { // tslint:disable-next-line:no-any const shape = [4, 1]; expect(() => tf.tensor4d([1, 2, 3, 4], shape)).toThrowError(); }); it('tf.tensor4d() throw error with null input value', () => { expect(() => tf.tensor4d(null)) .toThrowError('The input to the tensor constructor ' + 'must be a non-null value.'); }); it('tf.tensor5d() throw error with null input value', () => { expect(() => tf.tensor5d(null)) .toThrowError('The input to the tensor constructor ' + 'must be a non-null value.'); }); it('tf.tensor6d() throw error with null input value', () => { expect(() => tf.tensor6d(null)) .toThrowError('The input to the tensor constructor ' + 'must be a non-null value.'); }); it('default dtype', async () => { const a = tf.scalar(3); expect(a.dtype).toBe('float32'); expectArraysClose(await a.data(), 3); }); it('float32 dtype', async () => { const a = tf.scalar(3, 'float32'); expect(a.dtype).toBe('float32'); expectArraysClose(await a.data(), 3); }); it('int32 dtype', async () => { const a = tf.scalar(3, 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), 3); }); it('int32 dtype, 3.9 => 3, like numpy', async () => { const a = tf.scalar(3.9, 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), 3); }); it('int32 dtype, -3.9 => -3, like numpy', async () => { const a = tf.scalar(-3.9, 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), -3); }); it('bool dtype, 3 => true, like numpy', async () => { const a = tf.scalar(3, 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), 1); }); it('bool dtype, -2 => true, like numpy', async () => { const a = tf.scalar(-2, 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), 1); }); it('bool dtype, 0 => false, like numpy', async () => { const a = tf.scalar(0, 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), 0); }); it('bool dtype from boolean', async () => { const a = tf.scalar(false, 'bool'); expectArraysEqual(await a.data(), 0); expect(a.dtype).toBe('bool'); const b = tf.scalar(true, 'bool'); expectArraysEqual(await a.data(), 0); expect(b.dtype).toBe('bool'); }); it('int32 dtype from boolean', async () => { const a = tf.scalar(true, 'int32'); expectArraysEqual(await a.data(), 1); expect(a.dtype).toBe('int32'); }); it('default dtype from boolean', async () => { const a = tf.scalar(false); expectArraysEqual(await a.data(), 0); expect(a.dtype).toBe('bool'); }); it('default dtype', async () => { const a = tf.tensor1d([1, 2, 3]); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([3]); expectArraysClose(await a.data(), [1, 2, 3]); }); it('float32 dtype', async () => { const a = tf.tensor1d([1, 2, 3], 'float32'); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([3]); expectArraysClose(await a.data(), [1, 2, 3]); }); it('int32 dtype', async () => { const a = tf.tensor1d([1, 2, 3], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([3]); expectArraysEqual(await a.data(), [1, 2, 3]); }); it('int32 dtype, non-ints get floored, like numpy', async () => { const a = tf.tensor1d([1.1, 2.5, 3.9], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([3]); expectArraysEqual(await a.data(), [1, 2, 3]); }); it('int32 dtype, negative non-ints get ceiled, like numpy', async () => { const a = tf.tensor1d([-1.1, -2.5, -3.9], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([3]); expectArraysEqual(await a.data(), [-1, -2, -3]); }); it('bool dtype, !=0 is truthy, 0 is falsy, like numpy', async () => { const a = tf.tensor1d([1, -2, 0, 3], 'bool'); expect(a.dtype).toBe('bool'); expect(a.shape).toEqual([4]); expectArraysEqual(await a.data(), [1, 1, 0, 1]); }); it('default dtype from boolean[]', async () => { const a = tf.tensor1d([false, false, true]); expect(a.dtype).toBe('bool'); expectArraysClose(await a.data(), [0, 0, 1]); }); it('default dtype from UInt8Array', async () => { const a = tf.tensor1d(new Uint8Array([1, 5, 2])); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([3]); expectArraysClose(await a.data(), [1, 5, 2]); }); it('default dtype from Int32Array', async () => { const a = tf.tensor1d(new Int32Array([1, 5, 2])); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([3]); expectArraysClose(await a.data(), [1, 5, 2]); }); it('tf.tensor() from Float32Array and number[]', async () => { const a = tf.tensor([ new Float32Array([1, 2]), new Float32Array([3, 4]), new Float32Array([5, 6]), [7, 8] ]); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([4, 2]); expectArraysClose(await a.data(), [1, 2, 3, 4, 5, 6, 7, 8]); }); it('tf.tensor() from Int32Array and number[]', async () => { const a = tf.tensor([ new Int32Array([1, 2]), new Int32Array([3, 4]), new Int32Array([5, 6]), [7, 8] ]); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([4, 2]); expectArraysClose(await a.data(), [1, 2, 3, 4, 5, 6, 7, 8]); }); it('tf.tensor() from mixed TypedArray', async () => { const a = tf.tensor([ new Float32Array([1, 2]), new Int32Array([3, 4]), new Uint8Array([5, 6]), [7, 8] ]); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([4, 2]); expectArraysClose(await a.data(), [1, 2, 3, 4, 5, 6, 7, 8]); }); it('tf.tensor() from TypedArrays which are themselves 3D', () => { // 2 tensors, each with shape 20x20x3, as flat Float32Arrays. const img1 = new Float32Array(20 * 20 * 3); const img2 = new Float32Array(20 * 20 * 3); const t = tf.tensor([img1, img2], [2, 20, 20, 3]); expect(t.dtype).toBe('float32'); expect(t.shape).toEqual([2, 20, 20, 3]); }); it('tf.tensor() from TypedArrays which are themselves 3D, wrong shape', () => { const img1 = new Float32Array(20 * 20 * 3); const img2 = new Float32Array(20 * 20 * 3); expect(() => tf.tensor([img1, img2], [3, 20, 20, 3])).toThrowError(); }); it('default dtype from ascii string', async () => { const a = tf.tensor('hello'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([]); expectArraysEqual(await a.data(), ['hello']); }); it('default dtype from utf-8 string', async () => { const a = tf.tensor('даниел'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([]); expectArraysEqual(await a.data(), ['даниел']); }); it('default dtype from empty string', async () => { const a = tf.tensor(''); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([]); expectArraysEqual(await a.data(), ['']); }); it('default dtype from unicode escaped string', async () => { const a = tf.tensor('\u0434\u0430\u043d\u0438\u0435\u043b'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([]); expectArraysEqual(await a.data(), ['даниел']); }); it('default dtype from string[]', async () => { const a = tf.tensor(['a', 'b']); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([2]); expectArraysEqual(await a.data(), ['a', 'b']); }); it('float32 dtype from boolean[]', async () => { const a = tf.tensor1d([false, false, true], 'float32'); expect(a.dtype).toBe('float32'); expectArraysClose(await a.data(), [0, 0, 1]); }); it('int32 dtype from boolean[]', async () => { const a = tf.tensor1d([false, false, true], 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), [0, 0, 1]); }); it('bool dtype from boolean[]', async () => { const a = tf.tensor1d([false, false, true], 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), [0, 0, 1]); }); it('default dtype', async () => { const a = tf.tensor2d([1, 2, 3, 4], [2, 2]); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([2, 2]); expectArraysClose(await a.data(), [1, 2, 3, 4]); }); it('float32 dtype', async () => { const a = tf.tensor2d([1, 2, 3, 4], [2, 2], 'float32'); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([2, 2]); expectArraysClose(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype', async () => { const a = tf.tensor2d([[1, 2], [3, 4]], [2, 2], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2]); expectArraysEqual(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype, non-ints get floored, like numpy', async () => { const a = tf.tensor2d([1.1, 2.5, 3.9, 4.0], [2, 2], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2]); expectArraysEqual(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype, negative non-ints get ceiled, like numpy', async () => { const a = tf.tensor2d([-1.1, -2.5, -3.9, -4.0], [2, 2], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2]); expectArraysEqual(await a.data(), [-1, -2, -3, -4]); }); it('bool dtype, !=0 is truthy, 0 is falsy, like numpy', async () => { const a = tf.tensor2d([1, -2, 0, 3], [2, 2], 'bool'); expect(a.dtype).toBe('bool'); expect(a.shape).toEqual([2, 2]); expectArraysEqual(await a.data(), [1, 1, 0, 1]); }); it('default dtype from boolean[]', async () => { const a = tf.tensor2d([[false, false], [true, false]], [2, 2]); expect(a.dtype).toBe('bool'); expectArraysClose(await a.data(), [0, 0, 1, 0]); }); it('float32 dtype from boolean[]', async () => { const a = tf.tensor2d([[false, false], [true, false]], [2, 2], 'float32'); expect(a.dtype).toBe('float32'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('int32 dtype from boolean[]', async () => { const a = tf.tensor2d([[false, false], [true, false]], [2, 2], 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('bool dtype from boolean[]', async () => { const a = tf.tensor2d([[false, false], [true, false]], [2, 2], 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('default dtype', async () => { const a = tf.tensor3d([1, 2, 3, 4], [2, 2, 1]); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([2, 2, 1]); expectArraysClose(await a.data(), [1, 2, 3, 4]); }); it('float32 dtype', async () => { const a = tf.tensor3d([1, 2, 3, 4], [2, 2, 1], 'float32'); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([2, 2, 1]); expectArraysClose(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype', async () => { const a = tf.tensor3d([[[1], [2]], [[3], [4]]], [2, 2, 1], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2, 1]); expectArraysEqual(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype, non-ints get floored, like numpy', async () => { const a = tf.tensor3d([1.1, 2.5, 3.9, 4.0], [2, 2, 1], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2, 1]); expectArraysEqual(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype, negative non-ints get ceiled, like numpy', async () => { const a = tf.tensor3d([-1.1, -2.5, -3.9, -4.0], [2, 2, 1], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2, 1]); expectArraysEqual(await a.data(), [-1, -2, -3, -4]); }); it('bool dtype, !=0 is truthy, 0 is falsy, like numpy', async () => { const a = tf.tensor3d([1, -2, 0, 3], [2, 2, 1], 'bool'); expect(a.dtype).toBe('bool'); expect(a.shape).toEqual([2, 2, 1]); expectArraysEqual(await a.data(), [1, 1, 0, 1]); }); it('default dtype from boolean[]', async () => { const a = tf.tensor3d([[[false], [false]], [[true], [false]]], [2, 2, 1]); expect(a.dtype).toBe('bool'); expectArraysClose(await a.data(), [0, 0, 1, 0]); }); it('float32 dtype from boolean[]', async () => { const a = tf.tensor3d([[[false], [false]], [[true], [false]]], [2, 2, 1], 'float32'); expect(a.dtype).toBe('float32'); expectArraysClose(await a.data(), [0, 0, 1, 0]); }); it('int32 dtype from boolean[]', async () => { const a = tf.tensor3d([[[false], [false]], [[true], [false]]], [2, 2, 1], 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('bool dtype from boolean[]', async () => { const a = tf.tensor3d([[[false], [false]], [[true], [false]]], [2, 2, 1], 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('default dtype', async () => { const a = tf.tensor4d([1, 2, 3, 4], [2, 2, 1, 1]); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysClose(await a.data(), [1, 2, 3, 4]); }); it('float32 dtype', async () => { const a = tf.tensor4d([1, 2, 3, 4], [2, 2, 1, 1], 'float32'); expect(a.dtype).toBe('float32'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysClose(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype', async () => { const a = tf.tensor4d([[[[1]], [[2]]], [[[3]], [[4]]]], [2, 2, 1, 1], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype, non-ints get floored, like numpy', async () => { const a = tf.tensor4d([1.1, 2.5, 3.9, 4.0], [2, 2, 1, 1], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), [1, 2, 3, 4]); }); it('int32 dtype, negative non-ints get ceiled, like numpy', async () => { const a = tf.tensor4d([-1.1, -2.5, -3.9, -4.0], [2, 2, 1, 1], 'int32'); expect(a.dtype).toBe('int32'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), [-1, -2, -3, -4]); }); it('bool dtype, !=0 is truthy, 0 is falsy, like numpy', async () => { const a = tf.tensor4d([1, -2, 0, 3], [2, 2, 1, 1], 'bool'); expect(a.dtype).toBe('bool'); expect(a.shape).toEqual([2, 2, 1, 1]); expectArraysEqual(await a.data(), [1, 1, 0, 1]); }); it('default dtype from boolean[]', async () => { const a = tf.tensor4d([[[[false], [false]], [[true], [false]]]], [1, 2, 2, 1]); expect(a.dtype).toBe('bool'); expectArraysClose(await a.data(), [0, 0, 1, 0]); }); it('float32 dtype from boolean[]', async () => { const a = tf.tensor4d([[[[false], [false]], [[true], [false]]]], [1, 2, 2, 1], 'float32'); expect(a.dtype).toBe('float32'); expectArraysClose(await a.data(), [0, 0, 1, 0]); }); it('int32 dtype from boolean[]', async () => { const a = tf.tensor4d([[[[false], [false]], [[true], [false]]]], [1, 2, 2, 1], 'int32'); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('bool dtype from boolean[]', async () => { const a = tf.tensor4d([[[[false], [false]], [[true], [false]]]], [1, 2, 2, 1], 'bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), [0, 0, 1, 0]); }); it('Scalar default dtype', async () => { const a = tf.scalar(4); const b = a.reshape([1, 1]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([1, 1]); expectArraysClose(await a.data(), await b.data()); }); it('Scalar float32 dtype', () => { const a = tf.scalar(4, 'float32'); const b = a.reshape([1, 1]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([1, 1]); }); it('Scalar string dtype', () => { const a = tf.scalar('test', 'string'); const b = a.reshape([1, 1]); expect(b.dtype).toBe('string'); expect(b.shape).toEqual([1, 1]); }); it('scalar from encoded string', async () => { const a = tf.scalar(encodeString('hello'), 'string'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([]); expectArraysEqual(await a.data(), ['hello']); }); it('scalar from encoded string, but missing dtype', async () => { // We do not want to infer 'string' when the user passes Uint8Array in order // to be forward compatible in the future when we add uint8 dtype. expect(() => tf.scalar(encodeString('hello'))).toThrowError(); }); it('scalar from encoded string, but value is not uint8array', async () => { // tslint:disable-next-line:no-any expect(() => tf.scalar(new Float32Array([1, 2, 3]))).toThrowError(); }); it('Scalar inferred dtype from bool', async () => { const a = tf.scalar(true); expect(a.dtype).toBe('bool'); expect(a.shape).toEqual([]); expectArraysClose(await a.data(), [1]); }); it('Scalar inferred dtype from string', async () => { const a = tf.scalar('hello'); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([]); expectArraysEqual(await a.data(), ['hello']); }); it('Scalar int32 dtype', () => { const a = tf.scalar(4, 'int32'); const b = a.reshape([1, 1]); expect(b.dtype).toBe('int32'); expect(b.shape).toEqual([1, 1]); }); it('Scalar bool dtype', async () => { const a = tf.scalar(4, 'bool'); const b = a.reshape([1, 1, 1]); expect(b.dtype).toBe('bool'); expect(b.shape).toEqual([1, 1, 1]); expectArraysClose(await a.data(), await b.data()); }); it('Scalar complex64 dtype', async () => { const a = tf.complex(4, 5); const b = a.reshape([1, 1]); expectArraysClose(await a.data(), [4, 5]); expect(b.dtype).toBe('complex64'); expect(b.shape).toEqual([1, 1]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor1D default dtype', async () => { const a = tf.tensor1d([1, 2, 3, 4]); const b = a.reshape([2, 2]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([2, 2]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor1D inferred dtype from bools', async () => { const a = tf.tensor1d([true, false, false, true]); expect(a.dtype).toBe('bool'); expect(a.shape).toEqual([4]); expectArraysClose(await a.data(), [1, 0, 0, 1]); }); it('Tensor1D inferred dtype from strings', async () => { const a = tf.tensor1d(['a', 'b', 'c']); expect(a.dtype).toBe('string'); expect(a.shape).toEqual([3]); expectArraysEqual(await a.data(), ['a', 'b', 'c']); }); it('Tensor1D float32 dtype', () => { const a = tf.tensor1d([1, 2, 3, 4], 'float32'); const b = a.reshape([2, 2]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([2, 2]); }); it('Tensor1D int32 dtype', async () => { const a = tf.tensor1d([1, 2, 3, 4], 'int32'); const b = a.reshape([2, 2]); expect(b.dtype).toBe('int32'); expect(b.shape).toEqual([2, 2]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor1D complex64 dtype', async () => { const a = tf.complex([1, 3, 5, 7], [2, 4, 6, 8]); const b = a.reshape([2, 2]); expect(b.dtype).toBe('complex64'); expect(b.shape).toEqual([2, 2]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor2D default dtype', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const b = a.reshape([6]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([6]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor2D float32 dtype', () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3], 'float32'); const b = a.reshape([6]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([6]); }); it('Tensor2D int32 dtype', () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3], 'int32'); const b = a.reshape([6]); expect(b.dtype).toBe('int32'); expect(b.shape).toEqual([6]); }); it('Tensor2D bool dtype', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3], 'bool'); const b = a.reshape([6]); expect(b.dtype).toBe('bool'); expect(b.shape).toEqual([6]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor2D complex64 dtype', async () => { const a = tf.complex([[1, 3, 5], [7, 9, 11]], [[2, 4, 6], [8, 10, 12]]); const b = a.reshape([6]); expect(b.dtype).toBe('complex64'); expect(b.shape).toEqual([6]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor3D default dtype', async () => { const a = tf.tensor3d([1, 2, 3, 4, 5, 6], [2, 3, 1]); const b = a.reshape([6]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([6]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor3D float32 dtype', () => { const a = tf.tensor3d([1, 2, 3, 4, 5, 6], [2, 3, 1], 'float32'); const b = a.reshape([6]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([6]); }); it('Tensor3D int32 dtype', () => { const a = tf.tensor3d([1, 2, 3, 4, 5, 6], [2, 3, 1], 'int32'); const b = a.reshape([6]); expect(b.dtype).toBe('int32'); expect(b.shape).toEqual([6]); }); it('Tensor3D bool dtype', async () => { const a = tf.tensor3d([1, 2, 3, 4, 5, 6], [2, 3, 1], 'bool'); const b = a.reshape([6]); expect(b.dtype).toBe('bool'); expect(b.shape).toEqual([6]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor3D complex64 dtype', async () => { const a = tf.complex([[[1], [3], [5]], [[7], [9], [11]]], [[[2], [4], [6]], [[8], [10], [12]]]); const b = a.reshape([6]); expect(b.dtype).toBe('complex64'); expect(b.shape).toEqual([6]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor4D default dtype', async () => { const a = tf.tensor4d([1, 2, 3, 4, 5, 6], [2, 3, 1, 1]); const b = a.reshape([2, 3]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([2, 3]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor4D float32 dtype', () => { const a = tf.tensor4d([1, 2, 3, 4, 5, 6], [2, 3, 1, 1], 'float32'); const b = a.reshape([2, 3]); expect(b.dtype).toBe('float32'); expect(b.shape).toEqual([2, 3]); }); it('Tensor4D int32 dtype', async () => { const a = tf.tensor4d([1, 2, 3, 4, 5, 6], [2, 3, 1, 1], 'int32'); const b = a.reshape([3, 2]); expect(b.dtype).toBe('int32'); expect(b.shape).toEqual([3, 2]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor4D complex64 dtype', async () => { const a = tf.complex([[[[1]], [[3]], [[5]]], [[[7]], [[9]], [[11]]]], [[[[2]], [[4]], [[6]]], [[[8]], [[10]], [[12]]]]); const b = a.reshape([3, 2]); expect(b.dtype).toBe('complex64'); expect(b.shape).toEqual([3, 2]); expectArraysClose(await a.data(), await b.data()); }); it('Tensor4D bool dtype', () => { const a = tf.tensor4d([1, 2, 3, 4, 5, 6], [2, 3, 1, 1], 'bool'); const b = a.reshape([3, 2]); expect(b.dtype).toBe('bool'); expect(b.shape).toEqual([3, 2]); }); it('.data() with casting, string tensor', async () => { const a = tf.tensor(['a', 'b']); const data = await a.data(); expect(data).toEqual(['a', 'b']); }); it('reshape is functional', async () => { const a = tf.scalar(2.4); const b = a.reshape([]); expect(a.id).not.toBe(b.id); b.dispose(); expectArraysClose(await a.data(), [2.4]); }); it('reshape a string tensor', async () => { const a = tf.tensor(['a', 'b']); const b = a.reshape([2, 1, 1]); expect(b.dtype).toBe('string'); expect(b.shape).toEqual([2, 1, 1]); expectArraysEqual(await b.data(), ['a', 'b']); }); it('reshape throws when passed a non-tensor', () => { // tslint:disable-next-line:no-any expect(() => tf.reshape({}, [])) .toThrowError(/Argument 'x' passed to 'reshape' must be a Tensor/); }); it('reshape accepts a tensor-like object', async () => { const res = tf.reshape([[1, 2, 3], [4, 5, 6]], [3, 2]); expect(res.dtype).toBe('float32'); expect(res.shape).toEqual([3, 2]); expectArraysClose(await res.data(), [1, 2, 3, 4, 5, 6]); }); it('cast bool -> bool', () => { const a = tf.tensor1d([1, 0], 'bool'); expect(a.cast('bool').dtype).toEqual('bool'); }); it('cast bool -> int32', () => { const a = tf.tensor1d([1, 0], 'bool'); expect(a.cast('int32').dtype).toEqual('int32'); }); it('cast bool -> float32', () => { const a = tf.tensor1d([1, 0], 'bool'); expect(a.cast('float32').dtype).toEqual('float32'); }); it('cast int32 -> bool', () => { const a = tf.tensor1d([1, 0], 'int32'); expect(a.cast('bool').dtype).toEqual('bool'); }); it('cast int32 -> int32', () => { const a = tf.tensor1d([1, 2], 'int32'); expect(a.cast('int32').dtype).toEqual('int32'); }); it('cast int32 -> float32', () => { const a = tf.tensor1d([1, 2], 'int32'); expect(a.cast('float32').dtype).toEqual('float32'); }); it('cast float32 -> bool', () => { const a = tf.tensor1d([1.0, 0.0]); expect(a.cast('bool').dtype).toEqual('bool'); }); it('cast float32 -> int32', () => { const a = tf.tensor1d([1.0, 2.0]); expect(a.cast('int32').dtype).toEqual('int32'); }); it('cast float32 -> int32. async download', async () => { const a = tf.tensor1d([1, 2]); const aInt = a.cast('int32'); expect(aInt.dtype).toEqual('int32'); const asyncData = await aInt.data(); expect(asyncData instanceof Int32Array).toEqual(true); }); it('cast float32 -> int32. queued async download', async () => { const a = tf.tensor1d([1, 2]); const aInt = a.cast('int32'); expect(aInt.dtype).toEqual('int32'); const [first, second] = await Promise.all([aInt.data(), aInt.data()]); expect(first instanceof Int32Array).toEqual(true); expect(second instanceof Int32Array).toEqual(true); }); it('cast float32 -> int32. sync download', async () => { const a = tf.tensor1d([1, 2]).cast('int32'); expect(a.dtype).toEqual('int32'); const data = await a.data(); expect(data instanceof Int32Array).toEqual(true); }); it('cast float32 -> float32', () => { const a = tf.tensor1d([1.0, 2.0]); expect(a.cast('float32').dtype).toEqual('float32'); }); it('cast complex64 -> float32', async () => { const a = tf.complex([1.0, 2.0], [3.0, 4.0]); const result = a.cast('float32'); expect(result.dtype).toEqual('float32'); expectArraysClose(await result.data(), [1.0, 2.0]); }); it('cast complex64 -> int32', async () => { const a = tf.complex([1.0, 2.0], [3.0, 4.0]); const result = a.cast('int32'); expect(result.dtype).toEqual('int32'); expectArraysEqual(await result.data(), [1, 2]); }); it('cast complex64 -> bool', async () => { const a = tf.complex([1.0, 0.0], [1.0, 1.0]); const result = a.cast('bool'); expect(result.dtype).toEqual('bool'); expectArraysEqual(await result.data(), [true, false]); }); it('cast throws when passed a non-tensor', () => { expect(() => tf.cast({}, 'float32')) .toThrowError(/Argument 'x' passed to 'cast' must be a Tensor/); }); it('cast accepts a tensor-like object', async () => { const a = [1.0, 2.0]; const res = tf.cast(a, 'int32'); expect(res.dtype).toEqual('int32'); expectArraysClose(await res.data(), [1, 2]); }); it('cast string -> !string throws error', () => { const a = ['a', 'b']; expect(() => tf.cast(a, 'int32')).toThrowError(); expect(() => tf.cast(a, 'float32')).toThrowError(); expect(() => tf.cast(a, 'bool')).toThrowError(); expect(() => tf.cast(a, 'complex64')).toThrowError(); }); it('cast !string -> string throws error', () => { expect(() => tf.cast(tf.tensor(1, [], 'float32'), 'string')).toThrowError(); expect(() => tf.cast(tf.tensor(1, [], 'int32'), 'string')).toThrowError(); expect(() => tf.cast(tf.tensor(1, [], 'bool'), 'string')).toThrowError(); expect(() => tf.cast(tf.tensor(1, [], 'complex64'), 'string')) .toThrowError(); }); it('scalar bool -> int32', async () => { const a = tf.scalar(true, 'bool').toInt(); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), 1); }); it('Tensor1D float32 -> int32', async () => { const a = tf.tensor1d([1.1, 3.9, -2.9, 0]).toInt(); expect(a.dtype).toBe('int32'); expectArraysEqual(await a.data(), [1, 3, -2, 0]); }); it('Tensor2D float32 -> bool', async () => { const a = tf.tensor2d([1.1, 3.9, -2.9, 0], [2, 2]).asType('bool'); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), [1, 1, 1, 0]); }); it('Tensor2D int32 -> bool', async () => { const a = tf.tensor2d([1, 3, 0, -1], [2, 2], 'int32').toBool(); expect(a.dtype).toBe('bool'); expectArraysEqual(await a.data(), [1, 1, 0, 1]); }); it('Tensor3D bool -> float32', async () => { const a = tf.tensor3d([true, false, false, true], [2, 2, 1], 'bool').toFloat(); expect(a.dtype).toB