@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
313 lines (312 loc) • 11.9 kB
TypeScript
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/tensor" />
/// <reference types="@webgpu/types/dist" />
import { DataId, TensorInfo } from './tensor_info';
import { ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap } from './types';
export interface TensorData<D extends DataType> {
dataId?: DataId;
values?: DataTypeMap[D];
}
export interface Backend {
}
/**
* A mutable object, similar to `tf.Tensor`, that allows users to set values
* at locations before converting to an immutable `tf.Tensor`.
*
* See `tf.buffer` for creating a tensor buffer.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
export declare class TensorBuffer<R extends Rank, D extends DataType = 'float32'> {
dtype: D;
size: number;
shape: ShapeMap[R];
strides: number[];
values: DataTypeMap[D];
constructor(shape: ShapeMap[R], dtype: D, values?: DataTypeMap[D]);
/**
* Sets a value in the buffer at a given location.
*
* @param value The value to set.
* @param locs The location indices.
*
* @doc {heading: 'Tensors', subheading: 'Creation'}
*/
set(value: SingleValueMap[D], ...locs: number[]): void;
/**
* Returns the value in the buffer at the provided location.
*
* @param locs The location indices.
*
* @doc {heading: 'Tensors', subheading: 'Creation'}
*/
get(...locs: number[]): SingleValueMap[D];
locToIndex(locs: number[]): number;
indexToLoc(index: number): number[];
get rank(): number;
/**
* Creates an immutable `tf.Tensor` object from the buffer.
*
* @doc {heading: 'Tensors', subheading: 'Creation'}
*/
toTensor(): Tensor<R>;
}
export interface DataToGPUWebGLOption {
customTexShape?: [number, number];
}
export type DataToGPUOptions = DataToGPUWebGLOption;
export interface GPUData {
tensorRef: Tensor;
texture?: WebGLTexture;
buffer?: GPUBuffer;
texShape?: [number, number];
}
export interface TensorTracker {
makeTensor(values: DataValues, shape: number[], dtype: DataType, backend?: Backend): Tensor;
makeVariable(initialValue: Tensor, trainable?: boolean, name?: string, dtype?: DataType): Variable;
incRef(a: Tensor, backend: Backend): void;
disposeTensor(t: Tensor): void;
disposeVariable(v: Variable): void;
read(dataId: DataId): Promise<BackendValues>;
readSync(dataId: DataId): BackendValues;
readToGPU(dataId: DataId, options?: DataToGPUOptions): GPUData;
}
/**
* The Tensor class calls into this handler to delegate chaining operations.
*/
export interface OpHandler {
cast<T extends Tensor>(x: T, dtype: DataType): T;
buffer<R extends Rank, D extends DataType>(shape: ShapeMap[R], dtype: D, values?: DataTypeMap[D]): TensorBuffer<R, D>;
print<T extends Tensor>(x: T, verbose: boolean): void;
clone<T extends Tensor>(x: T): T;
}
/**
* An external consumer can register itself as the tensor tracker. This way
* the Tensor class can notify the tracker for every tensor created and
* disposed.
*/
export declare function setTensorTracker(fn: () => TensorTracker): void;
/**
* An external consumer can register itself as the op handler. This way the
* Tensor class can have chaining methods that call into ops via the op
* handler.
*/
export declare function setOpHandler(handler: OpHandler): void;
/**
* Sets the deprecation warning function to be used by this file. This way the
* Tensor class can be a leaf but still use the environment.
*/
export declare function setDeprecationWarningFn(fn: (msg: string) => void): void;
export declare namespace Tensor { }
/**
* A `tf.Tensor` object represents an immutable, multidimensional array of
* numbers that has a shape and a data type.
*
* For performance reasons, functions that create tensors do not necessarily
* perform a copy of the data passed to them (e.g. if the data is passed as a
* `Float32Array`), and changes to the data will change the tensor. This is not
* a feature and is not supported. To avoid this behavior, use the tensor before
* changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.
*
* See `tf.tensor` for details on how to create a `tf.Tensor`.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
export declare class Tensor<R extends Rank = Rank> implements TensorInfo {
/** Unique id of this tensor. */
readonly id: number;
/**
* Id of the bucket holding the data for this tensor. Multiple arrays can
* point to the same bucket (e.g. when calling array.reshape()).
*/
dataId: DataId;
/** The shape of the tensor. */
readonly shape: ShapeMap[R];
/** Number of elements in the tensor. */
readonly size: number;
/** The data type for the array. */
readonly dtype: DataType;
/** The rank type for the array (see `Rank` enum). */
readonly rankType: R;
/** Whether this tensor has been globally kept. */
kept: boolean;
/** The id of the scope this tensor is being tracked in. */
scopeId: number;
/** The keras mask that some keras layers attach to the tensor */
kerasMask?: Tensor;
/**
* Number of elements to skip in each dimension when indexing. See
* https://docs.scipy.org/doc/numpy/reference/generated/\
* numpy.ndarray.strides.html
*/
readonly strides: number[];
constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number);
get rank(): number;
/**
* Returns a promise of `tf.TensorBuffer` that holds the underlying data.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
buffer<D extends DataType = 'float32'>(): Promise<TensorBuffer<R, D>>;
/**
* Returns a `tf.TensorBuffer` that holds the underlying data.
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
bufferSync<D extends DataType = 'float32'>(): TensorBuffer<R, D>;
/**
* Returns the tensor data as a nested array. The transfer of data is done
* asynchronously.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
array(): Promise<ArrayMap[R]>;
/**
* Returns the tensor data as a nested array. The transfer of data is done
* synchronously.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
arraySync(): ArrayMap[R];
/**
* Asynchronously downloads the values from the `tf.Tensor`. Returns a
* promise of `TypedArray` that resolves when the computation has finished.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
data<D extends DataType = NumericDataType>(): Promise<DataTypeMap[D]>;
/**
* Copy the tensor's data to a new GPU resource. Comparing to the `dataSync()`
* and `data()`, this method prevents data from being downloaded to CPU.
*
* For WebGL backend, the data will be stored on a densely packed texture.
* This means that the texture will use the RGBA channels to store value.
*
* For WebGPU backend, the data will be stored on a buffer. There is no
* parameter, so can not use a user-defined size to create the buffer.
*
* @param options:
* For WebGL,
* - customTexShape: Optional. If set, will use the user defined
* texture shape to create the texture.
*
* @returns For WebGL backend, a GPUData contains the new texture and
* its information.
* {
* tensorRef: The tensor that is associated with this texture,
* texture: WebGLTexture,
* texShape: [number, number] // [height, width]
* }
*
* For WebGPU backend, a GPUData contains the new buffer.
* {
* tensorRef: The tensor that is associated with this buffer,
* buffer: GPUBuffer,
* }
*
* Remember to dispose the GPUData after it is used by
* `res.tensorRef.dispose()`.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
dataToGPU(options?: DataToGPUOptions): GPUData;
/**
* Synchronously downloads the values from the `tf.Tensor`. This blocks the
* UI thread until the values are ready, which can cause performance issues.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
dataSync<D extends DataType = NumericDataType>(): DataTypeMap[D];
/** Returns the underlying bytes of the tensor's data. */
bytes(): Promise<Uint8Array[] | Uint8Array>;
/**
* Disposes `tf.Tensor` from memory.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
dispose(): void;
protected isDisposedInternal: boolean;
get isDisposed(): boolean;
throwIfDisposed(): void;
/**
* Prints the `tf.Tensor`. See `tf.print` for details.
*
* @param verbose Whether to print verbose information about the tensor,
* including dtype and size.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
print(verbose?: boolean): void;
/**
* Returns a copy of the tensor. See `tf.clone` for details.
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
clone<T extends Tensor>(this: T): T;
/**
* Returns a human-readable description of the tensor. Useful for logging.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
toString(verbose?: boolean): string;
variable(trainable?: boolean, name?: string, dtype?: DataType): Variable<R>;
}
export declare function getGlobalTensorClass(): typeof Tensor;
export interface NumericTensor<R extends Rank = Rank> extends Tensor<R> {
dtype: NumericDataType;
dataSync<D extends DataType = NumericDataType>(): DataTypeMap[D];
data<D extends DataType = NumericDataType>(): Promise<DataTypeMap[D]>;
dataToGPU(options?: DataToGPUOptions): GPUData;
}
export interface StringTensor<R extends Rank = Rank> extends Tensor<R> {
dtype: 'string';
dataSync<D extends DataType = 'string'>(): DataTypeMap[D];
data<D extends DataType = 'string'>(): Promise<DataTypeMap[D]>;
}
/** @doclink Tensor */
export type Scalar = Tensor<Rank.R0>;
/** @doclink Tensor */
export type Tensor1D = Tensor<Rank.R1>;
/** @doclink Tensor */
export type Tensor2D = Tensor<Rank.R2>;
/** @doclink Tensor */
export type Tensor3D = Tensor<Rank.R3>;
/** @doclink Tensor */
export type Tensor4D = Tensor<Rank.R4>;
/** @doclink Tensor */
export type Tensor5D = Tensor<Rank.R5>;
/** @doclink Tensor */
export type Tensor6D = Tensor<Rank.R6>;
/**
* A mutable `tf.Tensor`, useful for persisting state, e.g. for training.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
export declare class Variable<R extends Rank = Rank> extends Tensor<R> {
trainable: boolean;
name: string;
constructor(initialValue: Tensor<R>, trainable: boolean, name: string, tensorId: number);
/**
* Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have
* the same shape and dtype as the old `tf.Tensor`.
*
* @param newValue New tensor to be assigned to this variable.
*
* @doc {heading: 'Tensors', subheading: 'Classes'}
*/
assign(newValue: Tensor<R>): void;
dispose(): void;
}