UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

399 lines 85.1 kB
/** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import * as tf from '../index'; import { backend } from '../index'; import { ALL_ENVS, describeWithFlags } from '../jasmine_util'; import { expectArraysClose } from '../test_util'; describeWithFlags('stridedSlice', ALL_ENVS, () => { it('with ellipsisMask=1', async () => { const t = tf.tensor2d([ [1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7], [4, 5, 6, 7, 8], [5, 6, 7, 8, 9], [6, 7, 8, 9, 10], [7, 8, 9, 10, 11], [8, 8, 9, 10, 11], [9, 8, 9, 10, 11], [10, 8, 9, 10, 11], ]); const begin = [0, 4]; const end = [0, 5]; const strides = [1, 1]; const beginMask = 0; const endMask = 0; const ellipsisMask = 1; const output = t.stridedSlice(begin, end, strides, beginMask, endMask, ellipsisMask); expect(output.shape).toEqual([10, 1]); expectArraysClose(await output.data(), [5, 6, 7, 8, 9, 10, 11, 11, 11, 11]); }); it('with ellipsisMask=1, begin / end masks and start / end normalization', async () => { const t = tf.randomNormal([1, 6, 2006, 4]); const output = tf.stridedSlice(t, [0, 0, 0], [0, 2004, 0], [1, 1, 1], 6, 4, 1); expect(output.shape).toEqual([1, 6, 2004, 4]); }); it('with ellipsisMask=1 and start / end normalization', async () => { const t = tf.tensor3d([ [[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]] ]); const begin = [1, 0]; const end = [2, 1]; const strides = [1, 1]; const beginMask = 0; const endMask = 0; const ellipsisMask = 1; const output = tf.stridedSlice(t, begin, end, strides, beginMask, endMask, ellipsisMask); expect(output.shape).toEqual([3, 2, 1]); expectArraysClose(await output.data(), [1, 2, 3, 4, 5, 6]); }); it('with ellipsisMask=2', async () => { const t = tf.tensor3d([ [[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]] ]); const begin = [1, 0, 0]; const end = [2, 1, 3]; const strides = [1, 1, 1]; const beginMask = 0; const endMask = 0; const ellipsisMask = 2; const output = tf.stridedSlice(t, begin, end, strides, beginMask, endMask, ellipsisMask); expect(output.shape).toEqual([1, 2, 3]); expectArraysClose(await output.data(), [3, 3, 3, 4, 4, 4]); }); it('with ellipsisMask=2 and start / end normalization', async () => { const t = tf.tensor4d([ [[[1, 1], [1, 1], [1, 1]], [[2, 2], [2, 2], [2, 2]]], [[[3, 3], [3, 3], [3, 3]], [[4, 4], [4, 4], [4, 4]]], [[[5, 5], [5, 5], [5, 5]], [[6, 6], [6, 6], [6, 6]]] ]); const begin = [1, 0, 0]; const end = [2, 1, 1]; const strides = [1, 1, 1]; const beginMask = 0; const endMask = 0; const ellipsisMask = 2; const output = tf.stridedSlice(t, begin, end, strides, beginMask, endMask, ellipsisMask); expect(output.shape).toEqual([1, 2, 3, 1]); expectArraysClose(await output.data(), [3, 3, 3, 4, 4, 4]); }); it('both ellipsis mask and newAxisMask are set', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const result = tf.stridedSlice(tensor, [0], [3], [2], 0, 0, 1, 1); expectArraysClose(await result.data(), [0, 1, 2, 3]); }); it('both ellipsis mask and shrinkAxisMask are set', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const result = tf.stridedSlice(tensor, [0], [3], [2], 0, 0, 1, 0, 1); expectArraysClose(await result.data(), [0, 1, 2, 3]); }); it('stridedSlice with first axis being new', async () => { // Python slice code: t[tf.newaxis,0:3] const t = tf.tensor1d([0, 1, 2, 3]); const begin = [0, 0]; const end = [1, 3]; const strides = [1, 2]; const beginMask = 0; const endMask = 0; const ellipsisMask = 0; const newAxisMask = 1; const output = tf.stridedSlice(t, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask); expect(output.shape).toEqual([1, 2]); expectArraysClose(await output.data(), [0, 2]); }); it('strided slice with several new axes', async () => { // Python slice code: t[1:2,tf.newaxis,0:3,tf.newaxis,2:5] const t = tf.zeros([2, 3, 4, 5]); const begin = [1, 0, 0, 0, 2]; const end = [2, 1, 3, 1, 5]; const strides = [1, 1, 1, 1, 1]; const beginMask = 0; const endMask = 0; const ellipsisMask = 0; const newAxisMask = 0b1010; const output = tf.stridedSlice(t, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask); expect(output.shape).toEqual([1, 1, 3, 1, 2, 5]); expectArraysClose(await output.data(), new Array(30).fill(0)); }); it('strided slice with new axes and shrink axes', () => { // Python slice code: t[1:2,tf.newaxis,1,tf.newaxis,2,2:5] const t = tf.zeros([2, 3, 4, 5]); const begin = [1, 0, 1, 0, 2, 2]; const end = [2, 1, 2, 1, 3, 5]; const strides = [1, 1, 1, 1, 1, 1]; const beginMask = 0; const endMask = 0; const ellipsisMask = 0; const newAxisMask = 0b1010; const shrinkAxisMask = 0b10100; const output = tf.stridedSlice(t, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask); expect(output.shape).toEqual([1, 1, 1, 3]); }); it('stridedSlice should support 1d tensor', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [0], [3], [2]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [0, 2]); }); it('stridedSlice should support 1d tensor', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [0], [3], [2]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [0, 2]); }); it('stridedSlice with 1d tensor should be used by tensor directly', async () => { const t = tf.tensor1d([0, 1, 2, 3]); const output = t.stridedSlice([0], [3], [2]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [0, 2]); }); it('stridedSlice should support 1d tensor empty result', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [10], [3], [2]); expect(output.shape).toEqual([0]); expectArraysClose(await output.data(), []); }); it('stridedSlice should support 1d tensor negative begin', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [-3], [3], [1]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [1, 2]); }); it('stridedSlice should support 1d tensor out of range begin', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [-5], [3], [1]); expect(output.shape).toEqual([3]); expectArraysClose(await output.data(), [0, 1, 2]); }); it('stridedSlice should support 1d tensor negative end', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [1], [-2], [1]); expect(output.shape).toEqual([1]); expectArraysClose(await output.data(), [1]); }); it('stridedSlice should support 1d tensor out of range end', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [-3], [5], [1]); expect(output.shape).toEqual([3]); expectArraysClose(await output.data(), [1, 2, 3]); }); it('stridedSlice should support 1d tensor begin mask', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [1], [3], [1], 1); expect(output.shape).toEqual([3]); expectArraysClose(await output.data(), [0, 1, 2]); }); it('stridedSlice should support 1d tensor nagtive begin and stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [-2], [-3], [-1]); expect(output.shape).toEqual([1]); expectArraysClose(await output.data(), [2]); }); it('stridedSlice should support 1d tensor' + ' out of range begin and negative stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [5], [-2], [-1]); expect(output.shape).toEqual([1]); expectArraysClose(await output.data(), [3]); }); it('stridedSlice should support 1d tensor nagtive end and stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [2], [-4], [-1]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [2, 1]); }); it('stridedSlice should support 1d tensor' + ' out of range end and negative stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [-3], [-5], [-1]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [1, 0]); }); it('stridedSlice should support 1d tensor end mask', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [1], [3], [1], 0, 1); expect(output.shape).toEqual([3]); expectArraysClose(await output.data(), [1, 2, 3]); }); it('stridedSlice should support 1d tensor shrink axis mask', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [1], [3], [1], 0, 0, 0, 0, 1); expect(output.shape).toEqual([]); expectArraysClose(await output.data(), [1]); }); it('stridedSlice should support 1d tensor negative stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [-1], [-4], [-1]); expect(output.shape).toEqual([3]); expectArraysClose(await output.data(), [3, 2, 1]); }); it('stridedSlice should support 1d tensor even length stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [0], [2], [2]); expect(output.shape).toEqual([1]); expectArraysClose(await output.data(), [0]); }); it('stridedSlice should support 1d tensor odd length stride', async () => { const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [0], [3], [2]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [0, 2]); }); it('stridedSlice should support 2d tensor identity', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [0, 0], [2, 3], [1, 1]); expect(output.shape).toEqual([2, 3]); expectArraysClose(await output.data(), [1, 2, 3, 4, 5, 6]); }); it('stridedSlice should support 2d tensor', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, 0], [2, 2], [1, 1]); expect(output.shape).toEqual([1, 2]); expectArraysClose(await output.data(), [4, 5]); }); it('stridedSlice should support 2d tensor strides', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [0, 0], [2, 3], [2, 2]); expect(output.shape).toEqual([1, 2]); expectArraysClose(await output.data(), [1, 3]); }); it('stridedSlice with 2d tensor should be used by tensor directly', async () => { const t = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = t.stridedSlice([1, 0], [2, 2], [1, 1]); expect(output.shape).toEqual([1, 2]); expectArraysClose(await output.data(), [4, 5]); }); it('stridedSlice should support 2d tensor negative strides', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, -1], [2, -4], [2, -1]); expect(output.shape).toEqual([1, 3]); expectArraysClose(await output.data(), [6, 5, 4]); }); it('stridedSlice should support 2d tensor begin mask', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, 0], [2, 2], [1, 1], 1); expect(output.shape).toEqual([2, 2]); expectArraysClose(await output.data(), [1, 2, 4, 5]); }); it('stridedSlice should support 2d tensor shrink mask', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, 0], [2, 2], [1, 1], 0, 0, 0, 0, 1); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [4, 5]); }); it('stridedSlice should support 2d tensor end mask', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, 0], [2, 2], [1, 1], 0, 2); expect(output.shape).toEqual([1, 3]); expectArraysClose(await output.data(), [4, 5, 6]); }); it('stridedSlice should support 2d tensor' + ' negative strides and begin mask', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, -2], [2, -4], [1, -1], 2); expect(output.shape).toEqual([1, 3]); expectArraysClose(await output.data(), [6, 5, 4]); }); it('stridedSlice should support 2d tensor' + ' negative strides and end mask', async () => { const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const output = tf.stridedSlice(tensor, [1, -2], [2, -3], [1, -1], 0, 2); expect(output.shape).toEqual([1, 2]); expectArraysClose(await output.data(), [5, 4]); }); it('stridedSlice should support 3d tensor identity', async () => { const tensor = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 2]); const output = tf.stridedSlice(tensor, [0, 0, 0], [2, 3, 2], [1, 1, 1]); expect(output.shape).toEqual([2, 3, 2]); expectArraysClose(await output.data(), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]); }); it('stridedSlice should support 3d tensor negative stride', async () => { const tensor = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 2]); const output = tf.stridedSlice(tensor, [-1, -1, -1], [-3, -4, -3], [-1, -1, -1]); expect(output.shape).toEqual([2, 3, 2]); expectArraysClose(await output.data(), [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); }); it('stridedSlice should support 3d tensor strided 2', async () => { const tensor = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 2]); const output = tf.stridedSlice(tensor, [0, 0, 0], [2, 3, 2], [2, 2, 2]); expect(output.shape).toEqual([1, 2, 1]); expectArraysClose(await output.data(), [1, 5]); }); it('stridedSlice should support 3d tensor shrink mask', async () => { const tensor = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 2]); const output = tf.stridedSlice(tensor, [0, 0, 0], [2, 3, 2], [1, 1, 1], 0, 0, 0, 0, 1); expect(output.shape).toEqual([3, 2]); expectArraysClose(await output.data(), [1, 2, 3, 4, 5, 6]); }); it('stridedSlice should support 3d with smaller length of begin array', async () => { const tensor = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 1, 2]); const output = tf.stridedSlice(tensor, [1, 0], [2, 3], [1, 1], 0, 0, 0, 0, 0); expect(output.shape).toEqual([1, 3, 1, 2]); expectArraysClose(await output.data(), [7, 8, 9, 10, 11, 12]); }); it('stridedSlice should support 3d with smaller length of end array', async () => { const tensor = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 1, 2]); const output = tf.stridedSlice(tensor, [1, 0], [2, 3], [1, 1], 0, 0, 0, 0, 0); expect(output.shape).toEqual([1, 3, 1, 2]); expectArraysClose(await output.data(), [7, 8, 9, 10, 11, 12]); }); it('stridedSlice should throw when passed a non-tensor', () => { expect(() => tf.stridedSlice({}, [0], [0], [1])) .toThrowError(/Argument 'x' passed to 'stridedSlice' must be a Tensor/); }); it('stridedSlice should handle negative end with ellipsisMask', () => { const a = tf.ones([1, 240, 1, 10]); const output = tf.stridedSlice(a, [0, 0, 0], [0, -1, 0], [1, 1, 1], 3, 1, 4); expect(output.shape).toEqual([1, 239, 1, 10]); }); it('stridedSlice should handle negative begin with ellipsis_mask', () => { const a = tf.ones([1, 36, 17, 3]); const output = tf.stridedSlice(a, [0, -1], [0, 0], [1, 1], 0, 2, 1, 0, 0); expect(output.shape).toEqual([1, 36, 17, 1]); }); it('accepts a tensor-like object', async () => { const tensor = [0, 1, 2, 3]; const output = tf.stridedSlice(tensor, [0], [3], [2]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [0, 2]); }); it('accepts int32 tensor', async () => { if (backend() && backend().floatPrecision() === 32) { // TODO: Use skip() instead when it is implemented const tensor = tf.tensor2d([1, 2, 3, 4, 12345678, 6], [2, 3], 'int32'); const output = tf.stridedSlice(tensor, [1, 0], [2, 2], [1, 1]); expect(output.shape).toEqual([1, 2]); expect(output.dtype).toEqual('int32'); expectArraysClose(await output.data(), [4, 12345678]); } }); it('ensure no memory leak', async () => { const numTensorsBefore = tf.memory().numTensors; const numDataIdBefore = tf.engine().backend.numDataIds(); const tensor = tf.tensor1d([0, 1, 2, 3]); const output = tf.stridedSlice(tensor, [0], [3], [2]); expect(output.shape).toEqual([2]); expectArraysClose(await output.data(), [0, 2]); tensor.dispose(); output.dispose(); const numTensorsAfter = tf.memory().numTensors; const numDataIdAfter = tf.engine().backend.numDataIds(); expect(numTensorsAfter).toBe(numTensorsBefore); expect(numDataIdAfter).toBe(numDataIdBefore); }); }); //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoic3RyaWRlZF9zbGljZV90ZXN0LmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvc3RyaWRlZF9zbGljZV90ZXN0LnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILE9BQU8sS0FBSyxFQUFFLE1BQU0sVUFBVSxDQUFDO0FBQy9CLE9BQU8sRUFBQyxPQUFPLEVBQUMsTUFBTSxVQUFVLENBQUM7QUFDakMsT0FBTyxFQUFDLFFBQVEsRUFBRSxpQkFBaUIsRUFBQyxNQUFNLGlCQUFpQixDQUFDO0FBQzVELE9BQU8sRUFBQyxpQkFBaUIsRUFBQyxNQUFNLGNBQWMsQ0FBQztBQUUvQyxpQkFBaUIsQ0FBQyxjQUFjLEVBQUUsUUFBUSxFQUFFLEdBQUcsRUFBRTtJQUMvQyxFQUFFLENBQUMscUJBQXFCLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDbkMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQztZQUNwQixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUM7WUFDZixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUM7WUFDZixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUM7WUFDZixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUM7WUFDZixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUM7WUFDZixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLENBQUM7WUFDaEIsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDO1lBQ2pCLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQztZQUNqQixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUM7WUFDakIsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDO1NBQ25CLENBQUMsQ0FBQztRQUNILE1BQU0sS0FBSyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3JCLE1BQU0sR0FBRyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ25CLE1BQU0sT0FBTyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3ZCLE1BQU0sU0FBUyxHQUFHLENBQUMsQ0FBQztRQUNwQixNQUFNLE9BQU8sR0FBRyxDQUFDLENBQUM7UUFDbEIsTUFBTSxZQUFZLEdBQUcsQ0FBQyxDQUFDO1FBQ3ZCLE1BQU0sTUFBTSxHQUNSLENBQUMsQ0FBQyxZQUFZLENBQUMsS0FBSyxFQUFFLEdBQUcsRUFBRSxPQUFPLEVBQUUsU0FBUyxFQUFFLE9BQU8sRUFBRSxZQUFZLENBQUMsQ0FBQztRQUMxRSxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3RDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxDQUFDLENBQUMsQ0FBQztJQUM5RSxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxzRUFBc0UsRUFDdEUsS0FBSyxJQUFJLEVBQUU7UUFDVCxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUMzQyxNQUFNLE1BQU0sR0FDUixFQUFFLENBQUMsWUFBWSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3BFLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNoRCxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyxtREFBbUQsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNqRSxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDO1lBQ3BCLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztTQUN2RSxDQUFDLENBQUM7UUFDSCxNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUNyQixNQUFNLEdBQUcsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUNuQixNQUFNLE9BQU8sR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUN2QixNQUFNLFNBQVMsR0FBRyxDQUFDLENBQUM7UUFDcEIsTUFBTSxPQUFPLEdBQUcsQ0FBQyxDQUFDO1FBQ2xCLE1BQU0sWUFBWSxHQUFHLENBQUMsQ0FBQztRQUV2QixNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUMxQixDQUFDLEVBQUUsS0FBSyxFQUFFLEdBQUcsRUFBRSxPQUFPLEVBQUUsU0FBUyxFQUFFLE9BQU8sRUFBRSxZQUFZLENBQUMsQ0FBQztRQUM5RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN4QyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM3RCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxxQkFBcUIsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNuQyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDO1lBQ3BCLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztTQUN2RSxDQUFDLENBQUM7UUFDSCxNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDeEIsTUFBTSxHQUFHLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3RCLE1BQU0sT0FBTyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUMxQixNQUFNLFNBQVMsR0FBRyxDQUFDLENBQUM7UUFDcEIsTUFBTSxPQUFPLEdBQUcsQ0FBQyxDQUFDO1FBQ2xCLE1BQU0sWUFBWSxHQUFHLENBQUMsQ0FBQztRQUN2QixNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUMxQixDQUFDLEVBQUUsS0FBSyxFQUFFLEdBQUcsRUFBRSxPQUFPLEVBQUUsU0FBUyxFQUFFLE9BQU8sRUFBRSxZQUFZLENBQUMsQ0FBQztRQUM5RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN4QyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM3RCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxtREFBbUQsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNqRSxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDO1lBQ3BCLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUVwRCxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFFcEQsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ3JELENBQUMsQ0FBQztRQUVILE1BQU0sS0FBSyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUN4QixNQUFNLEdBQUcsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDdEIsTUFBTSxPQUFPLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzFCLE1BQU0sU0FBUyxHQUFHLENBQUMsQ0FBQztRQUNwQixNQUFNLE9BQU8sR0FBRyxDQUFDLENBQUM7UUFDbEIsTUFBTSxZQUFZLEdBQUcsQ0FBQyxDQUFDO1FBQ3ZCLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQzFCLENBQUMsRUFBRSxLQUFLLEVBQUUsR0FBRyxFQUFFLE9BQU8sRUFBRSxTQUFTLEVBQUUsT0FBTyxFQUFFLFlBQVksQ0FBQyxDQUFDO1FBQzlELE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUMzQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM3RCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyw0Q0FBNEMsRUFBRSxLQUFLLElBQUksRUFBRTtRQUMxRCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6QyxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUNsRSxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDdkQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsK0NBQStDLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDN0QsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3JFLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUN2RCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyx3Q0FBd0MsRUFBRSxLQUFLLElBQUksRUFBRTtRQUN0RCx1Q0FBdUM7UUFDdkMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDcEMsTUFBTSxLQUFLLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDckIsTUFBTSxHQUFHLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDbkIsTUFBTSxPQUFPLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDdkIsTUFBTSxTQUFTLEdBQUcsQ0FBQyxDQUFDO1FBQ3BCLE1BQU0sT0FBTyxHQUFHLENBQUMsQ0FBQztRQUNsQixNQUFNLFlBQVksR0FBRyxDQUFDLENBQUM7UUFDdkIsTUFBTSxXQUFXLEdBQUcsQ0FBQyxDQUFDO1FBRXRCLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQzFCLENBQUMsRUFBRSxLQUFLLEVBQUUsR0FBRyxFQUFFLE9BQU8sRUFBRSxTQUFTLEVBQUUsT0FBTyxFQUFFLFlBQVksRUFBRSxXQUFXLENBQUMsQ0FBQztRQUMzRSxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3JDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDakQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMscUNBQXFDLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDbkQsMERBQTBEO1FBQzFELE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2pDLE1BQU0sS0FBSyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzlCLE1BQU0sR0FBRyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzVCLE1BQU0sT0FBTyxHQUFhLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzFDLE1BQU0sU0FBUyxHQUFHLENBQUMsQ0FBQztRQUNwQixNQUFNLE9BQU8sR0FBRyxDQUFDLENBQUM7UUFDbEIsTUFBTSxZQUFZLEdBQUcsQ0FBQyxDQUFDO1FBQ3ZCLE1BQU0sV0FBVyxHQUFHLE1BQU0sQ0FBQztRQUMzQixNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUMxQixDQUFDLEVBQUUsS0FBSyxFQUFFLEdBQUcsRUFBRSxPQUFPLEVBQUUsU0FBUyxFQUFFLE9BQU8sRUFBRSxZQUFZLEVBQUUsV0FBVyxDQUFDLENBQUM7UUFDM0UsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDakQsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsSUFBSSxLQUFLLENBQUMsRUFBRSxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDaEUsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsNkNBQTZDLEVBQUUsR0FBRyxFQUFFO1FBQ3JELDBEQUEwRDtRQUMxRCxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNqQyxNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDakMsTUFBTSxHQUFHLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQy9CLE1BQU0sT0FBTyxHQUFhLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUM3QyxNQUFNLFNBQVMsR0FBRyxDQUFDLENBQUM7UUFDcEIsTUFBTSxPQUFPLEdBQUcsQ0FBQyxDQUFDO1FBQ2xCLE1BQU0sWUFBWSxHQUFHLENBQUMsQ0FBQztRQUN2QixNQUFNLFdBQVcsR0FBRyxNQUFNLENBQUM7UUFDM0IsTUFBTSxjQUFjLEdBQUcsT0FBTyxDQUFDO1FBQy9CLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQzFCLENBQUMsRUFBRSxLQUFLLEVBQUUsR0FBRyxFQUFFLE9BQU8sRUFBRSxTQUFTLEVBQUUsT0FBTyxFQUFFLFlBQVksRUFBRSxXQUFXLEVBQ3JFLGNBQWMsQ0FBQyxDQUFDO1FBQ3BCLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM3QyxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyx1Q0FBdUMsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNyRCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6QyxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3RELE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNsQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2pELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHVDQUF1QyxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3JELE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdEQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDakQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsK0RBQStELEVBQy9ELEtBQUssSUFBSSxFQUFFO1FBQ1QsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDcEMsTUFBTSxNQUFNLEdBQUcsQ0FBQyxDQUFDLFlBQVksQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQzdDLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNsQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2pELENBQUMsQ0FBQyxDQUFDO0lBRU4sRUFBRSxDQUFDLG9EQUFvRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ2xFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdkQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLEVBQUUsQ0FBQyxDQUFDO0lBQzdDLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHNEQUFzRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3BFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNqRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQywwREFBMEQsRUFBRSxLQUFLLElBQUksRUFBRTtRQUN4RSxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6QyxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdkQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3BELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLG9EQUFvRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ2xFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQzlDLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHdEQUF3RCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3RFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDcEQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsa0RBQWtELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDaEUsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDekQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3BELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLGdFQUFnRSxFQUNoRSxLQUFLLElBQUksRUFBRTtRQUNULE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM5QyxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyx1Q0FBdUM7UUFDbkMseUNBQXlDLEVBQzdDLEtBQUssSUFBSSxFQUFFO1FBQ1QsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDeEQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM5QyxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyw4REFBOEQsRUFDOUQsS0FBSyxJQUFJLEVBQUU7UUFDVCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6QyxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN4RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNqRCxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyx1Q0FBdUM7UUFDbkMsdUNBQXVDLEVBQzNDLEtBQUssSUFBSSxFQUFFO1FBQ1QsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNqRCxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyxnREFBZ0QsRUFBRSxLQUFLLElBQUksRUFBRTtRQUM5RCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6QyxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDNUQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3BELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHdEQUF3RCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3RFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUNyRSxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUNqQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDOUMsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsdURBQXVELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDckUsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDcEQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsMERBQTBELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDeEUsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN0RCxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQzlDLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHlEQUF5RCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3ZFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdEQsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDakQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsZ0RBQWdELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDOUQsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2RCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQy9ELE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDN0QsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsdUNBQXVDLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDckQsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2RCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQy9ELE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNqRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQywrQ0FBK0MsRUFBRSxLQUFLLElBQUksRUFBRTtRQUM3RCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3ZELE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDL0QsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNyQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2pELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLCtEQUErRCxFQUMvRCxLQUFLLElBQUksRUFBRTtRQUNULE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEQsTUFBTSxNQUFNLEdBQUcsQ0FBQyxDQUFDLFlBQVksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3RELE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNqRCxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyx3REFBd0QsRUFBRSxLQUFLLElBQUksRUFBRTtRQUN0RSxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3ZELE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEUsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNyQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNwRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxrREFBa0QsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNoRSxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3ZELE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ2xFLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3ZELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLG1EQUFtRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ2pFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdkQsTUFBTSxNQUFNLEdBQ1IsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ25FLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNsQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2pELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLGdEQUFnRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQzlELE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdkQsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3JFLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDcEQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsdUNBQXVDO1FBQ25DLGtDQUFrQyxFQUN0QyxLQUFLLElBQUksRUFBRTtRQUNULE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdkQsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDckUsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNyQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNwRCxDQUFDLENBQUMsQ0FBQztJQUVOLEVBQUUsQ0FBQyx1Q0FBdUM7UUFDbkMsZ0NBQWdDLEVBQ3BDLEtBQUssSUFBSSxFQUFFO1FBQ1QsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2RCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsWUFBWSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDeEUsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNyQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2pELENBQUMsQ0FBQyxDQUFDO0lBRU4sRUFBRSxDQUFDLGdEQUFnRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQzlELE1BQU0sTUFBTSxHQUNSLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3BFLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQU