@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
42 lines (41 loc) • 1.57 kB
TypeScript
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/split" />
import { Tensor } from '../tensor';
import { TensorLike } from '../types';
/**
* Splits a `tf.Tensor` into sub tensors.
*
* If `numOrSizeSplits` is a number, splits `x` along dimension `axis`
* into `numOrSizeSplits` smaller tensors.
* Requires that `numOrSizeSplits` evenly divides `x.shape[axis]`.
*
* If `numOrSizeSplits` is a number array, splits `x` into
* `numOrSizeSplits.length` pieces. The shape of the `i`-th piece has the
* same size as `x` except along dimension `axis` where the size is
* `numOrSizeSplits[i]`.
*
* ```js
* const x = tf.tensor2d([1, 2, 3, 4, 5, 6, 7, 8], [2, 4]);
* const [a, b] = tf.split(x, 2, 1);
* a.print();
* b.print();
*
* const [c, d, e] = tf.split(x, [1, 2, 1], 1);
* c.print();
* d.print();
* e.print();
* ```
*
* @param x The input tensor to split.
* @param numOrSizeSplits Either an integer indicating the number of
* splits along the axis or an array of integers containing the sizes of
* each output tensor along the axis. If a number then it must evenly divide
* `x.shape[axis]`; otherwise the sum of sizes must match `x.shape[axis]`.
* Can contain one -1 indicating that dimension is to be inferred.
* @param axis The dimension along which to split. Defaults to 0 (the first
* dim).
*
* @doc {heading: 'Tensors', subheading: 'Slicing and Joining'}
*/
declare function split_<T extends Tensor>(x: Tensor | TensorLike, numOrSizeSplits: number[] | number, axis?: number): T[];
export declare const split: typeof split_;
export {};