UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

57 lines (56 loc) 2.63 kB
/** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /// <amd-module name="@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_mean" /> import { Tensor, Tensor1D } from '../../tensor'; import { TensorLike } from '../../types'; /** * Computes the mean along sparse segments of a tensor. * * ```js * const c = tf.tensor2d([[1,2,3,4], [-1,-2,-3,-4], [6,7,8,9]]); * // Select two rows, one segment. * const result1 = tf.sparse.sparseSegmentMean(c, * tf.tensor1d([0, 1], 'int32'), * tf.tensor1d([0, 0], 'int32')); * result1.print(); // [[0, 0, 0, 0]] * * // Select two rows, two segments. * const result2 = tf.sparse.sparseSegmentMean(c, * tf.tensor1d([0, 1], 'int32'), * tf.tensor1d([0, 1], 'int32')); * result2.print(); // [[1, 2, 3, 4], [-1, -2, -3, -4]] * * // Select all rows, two segments. * const result3 = tf.sparse.sparseSegmentMean(c, * tf.tensor1d([0, 1, 2], 'int32'), * tf.tensor1d([0, 1, 1], 'int32')); * result3.print(); // [[1.0, 2.0, 3.0, 4.0], [2.5, 2.5, 2.5, 2.5]] * ``` * @param data: A Tensor of at least one dimension with data that will be * assembled in the output. * @param indices: A 1-D Tensor with indices into data. Has same rank as * segmentIds. * @param segmentIds: A 1-D Tensor with indices into the output Tensor. Values * should be sorted and can be repeated. * @return Has same shape as data, except for dimension 0 which has equal to * the number of segments. * * @doc {heading: 'Operations', subheading: 'Sparse'} */ declare function sparseSegmentMean_(data: Tensor | TensorLike, indices: Tensor1D | TensorLike, segmentIds: Tensor1D | TensorLike): Tensor; export declare const sparseSegmentMean: typeof sparseSegmentMean_; export {};