@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
80 lines (79 loc) • 3.59 kB
TypeScript
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/sparse/sparse_fill_empty_rows" />
import { Scalar, Tensor1D, Tensor2D } from '../../tensor';
import { NamedTensorMap } from '../../tensor_types';
import { ScalarLike, TensorLike } from '../../types';
/**
* The input SparseTensor is represented via the map of inputs {`indices`,
* `values`, `denseShape`}. The output SparseTensor has the same `denseShape`
* but with indices `outputIndices` and values `outputValues`. This op inserts a
* single entry for every row that doesn't have any values. The index is created
* as `[row, 0, ..., 0]` and the inserted value is `defaultValue`.
*
* For example, suppose `spInput` has shape [5, 6] and non-empty values:
* [0, 1]: a
* [0, 3]: b
* [2, 0]: c
* [3, 1]: d
*
* Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:
* [0, 1]: a
* [0, 3]: b
* [1, 0]: `defaultValue`
* [2, 0]: c
* [3, 1]: d
* [4, 0]: `defaultValue`
*
* The output SparseTensor will be in row-major order and will have the same
* shape as the input.
*
* This op also returns an indicator vector shaped [dense_shape[0]] such that
* emptyRowIndicator[i] = True iff row i was an empty row.
*
* And a reverse index map vector shaped [indices.shape[0]] that is used during
* backpropagation, reverseIndexMap[i] = outi s.t. indices[i, j] ==
* outputIndices[outi, j] for all j
*
* ```js
* const result = tf.sparse.sparseFillEmptyRows(
* [[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]],
* [0, 10, 13, 14, 32, 33], [5, 6], -1);
* console.log(result);
* result['outputIndices'].print(); // [[0, 0], [1, 0], [1, 3], [1, 4],
* // [2, 0], [3, 2], [3, 3], [4, 0]]
* result['outputValues'].print(); // [0, 10, 13, 14,-1, 32, 33, -1]
* result['emptyRowIndicator'].print(); // [false, false, true, false, true]
* result['reverseIndexMap'].print(); // [0, 1, 2, 3, 5, 6]
* ```
* @param indices: 2-D. The indices of the sparse tensor.
* @param values: 1-D. The values of the sparse tensor.
* @param denseShape: 1-D. The shape of the sparse tensor.
* @param defaultValue: 0-D. Default value to insert into location [row, 0, ...,
* 0] for rows missing from the input sparse tensor.
* @return A map with the following properties:
* - outputIndices
* - outputValues: 1-D. The values of the filled sparse tensor.
* - emptyRowIndicator: 1-D. Whether the dense row was missing in the input
* sparse tensor.
* - reverseIndexMap: 1-D. A map from the input indices to the output
* indices.
* @doc {heading: 'Operations', subheading: 'Sparse'}
*/
declare function sparseFillEmptyRows_(indices: Tensor2D | TensorLike, values: Tensor1D | TensorLike, denseShape: Tensor1D | TensorLike, defaultValue: Scalar | ScalarLike): NamedTensorMap;
export declare const sparseFillEmptyRows: typeof sparseFillEmptyRows_;
export {};