UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

75 lines (74 loc) 3.29 kB
/** * @license * Copyright 2022 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /// <amd-module name="@tensorflow/tfjs-core/dist/ops/search_sorted" /> import { Tensor } from '../tensor'; import { TensorLike } from '../types'; /** * Searches for where a value would go in a sorted sequence. * * This is not a method for checking containment (like javascript in). * * The typical use case for this operation is "binning", "bucketing", or * "discretizing". The values are assigned to bucket-indices based on the edges * listed in 'sortedSequence'. This operation returns the bucket-index for each * value. * * The side argument controls which index is returned if a value lands exactly * on an edge. * * The axis is not settable for this operation. It always operates on the * innermost dimension (axis=-1). The operation will accept any number of outer * dimensions. * * Note: This operation assumes that 'sortedSequence' is sorted along the * innermost axis, maybe using 'sort(..., axis=-1)'. If the sequence is not * sorted no error is raised and the content of the returned tensor is not well * defined. * * ```js * const edges = tf.tensor1d([-1, 3.3, 9.1, 10.0]); * let values = tf.tensor1d([0.0, 4.1, 12.0]); * const result1 = tf.searchSorted(edges, values, 'left'); * result1.print(); // [1, 2, 4] * * const seq = tf.tensor1d([0, 3, 9, 10, 10]); * values = tf.tensor1d([0, 4, 10]); * const result2 = tf.searchSorted(seq, values, 'left'); * result2.print(); // [0, 2, 3] * const result3 = tf.searchSorted(seq, values, 'right'); * result3.print(); // [1, 2, 5] * * const sortedSequence = tf.tensor2d([[0., 3., 8., 9., 10.], * [1., 2., 3., 4., 5.]]); * values = tf.tensor2d([[9.8, 2.1, 4.3], * [0.1, 6.6, 4.5, ]]); * const result4 = tf.searchSorted(sortedSequence, values, 'left'); * result4.print(); // [[4, 1, 2], [0, 5, 4]] * ``` * @param sortedSequence: N-D. Sorted sequence. * @param values: N-D. Search values. * @param side: 'left'|'right'. Defaults to 'left'. 'left' corresponds to lower * bound and 'right' to upper bound. * @return An N-D int32 tensor the size of values containing the result of * applying either lower bound or upper bound (depending on side) to each * value. The result is not a global index to the entire Tensor, but the * index in the last dimension. * @doc {heading: 'Operations', subheading: 'Evaluation'} */ declare function searchSorted_(sortedSequence: Tensor | TensorLike, values: Tensor | TensorLike, side?: 'left' | 'right'): Tensor; export declare const searchSorted: typeof searchSorted_; export {};