@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
75 lines (74 loc) • 3.29 kB
TypeScript
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/search_sorted" />
import { Tensor } from '../tensor';
import { TensorLike } from '../types';
/**
* Searches for where a value would go in a sorted sequence.
*
* This is not a method for checking containment (like javascript in).
*
* The typical use case for this operation is "binning", "bucketing", or
* "discretizing". The values are assigned to bucket-indices based on the edges
* listed in 'sortedSequence'. This operation returns the bucket-index for each
* value.
*
* The side argument controls which index is returned if a value lands exactly
* on an edge.
*
* The axis is not settable for this operation. It always operates on the
* innermost dimension (axis=-1). The operation will accept any number of outer
* dimensions.
*
* Note: This operation assumes that 'sortedSequence' is sorted along the
* innermost axis, maybe using 'sort(..., axis=-1)'. If the sequence is not
* sorted no error is raised and the content of the returned tensor is not well
* defined.
*
* ```js
* const edges = tf.tensor1d([-1, 3.3, 9.1, 10.0]);
* let values = tf.tensor1d([0.0, 4.1, 12.0]);
* const result1 = tf.searchSorted(edges, values, 'left');
* result1.print(); // [1, 2, 4]
*
* const seq = tf.tensor1d([0, 3, 9, 10, 10]);
* values = tf.tensor1d([0, 4, 10]);
* const result2 = tf.searchSorted(seq, values, 'left');
* result2.print(); // [0, 2, 3]
* const result3 = tf.searchSorted(seq, values, 'right');
* result3.print(); // [1, 2, 5]
*
* const sortedSequence = tf.tensor2d([[0., 3., 8., 9., 10.],
* [1., 2., 3., 4., 5.]]);
* values = tf.tensor2d([[9.8, 2.1, 4.3],
* [0.1, 6.6, 4.5, ]]);
* const result4 = tf.searchSorted(sortedSequence, values, 'left');
* result4.print(); // [[4, 1, 2], [0, 5, 4]]
* ```
* @param sortedSequence: N-D. Sorted sequence.
* @param values: N-D. Search values.
* @param side: 'left'|'right'. Defaults to 'left'. 'left' corresponds to lower
* bound and 'right' to upper bound.
* @return An N-D int32 tensor the size of values containing the result of
* applying either lower bound or upper bound (depending on side) to each
* value. The result is not a global index to the entire Tensor, but the
* index in the last dimension.
* @doc {heading: 'Operations', subheading: 'Evaluation'}
*/
declare function searchSorted_(sortedSequence: Tensor | TensorLike, values: Tensor | TensorLike, side?: 'left' | 'right'): Tensor;
export declare const searchSorted: typeof searchSorted_;
export {};