@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
47 lines (46 loc) • 2.06 kB
TypeScript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/one_hot" />
import { Tensor } from '../tensor';
import { DataType, TensorLike } from '../types';
/**
* Creates a one-hot `tf.Tensor`. The locations represented by `indices` take
* value `onValue` (defaults to 1), while all other locations take value
* `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank
* `R+1` with the last axis of size `depth`.
* `indices` used to encode prediction class must start from 0. For example,
* if you have 3 classes of data, class 1 should be encoded as 0, class 2
* should be 1, and class 3 should be 2.
*
* ```js
* tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();
* ```
*
* @param indices `tf.Tensor` of indices with dtype `int32`. Indices must
* start from 0.
* @param depth The depth of the one hot dimension.
* @param onValue A number used to fill in the output when the index matches
* the location.
* @param offValue A number used to fill in the output when the index does
* not match the location.
* @param dtype The dtype of the output tensor, default to 'int32'.
*
* @doc {heading: 'Tensors', subheading: 'Creation'}
*/
declare function oneHot_(indices: Tensor | TensorLike, depth: number, onValue?: number, offValue?: number, dtype?: DataType): Tensor;
export declare const oneHot: typeof oneHot_;
export {};