UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

47 lines (46 loc) 2.06 kB
/** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /// <amd-module name="@tensorflow/tfjs-core/dist/ops/one_hot" /> import { Tensor } from '../tensor'; import { DataType, TensorLike } from '../types'; /** * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take * value `onValue` (defaults to 1), while all other locations take value * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank * `R+1` with the last axis of size `depth`. * `indices` used to encode prediction class must start from 0. For example, * if you have 3 classes of data, class 1 should be encoded as 0, class 2 * should be 1, and class 3 should be 2. * * ```js * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print(); * ``` * * @param indices `tf.Tensor` of indices with dtype `int32`. Indices must * start from 0. * @param depth The depth of the one hot dimension. * @param onValue A number used to fill in the output when the index matches * the location. * @param offValue A number used to fill in the output when the index does * not match the location. * @param dtype The dtype of the output tensor, default to 'int32'. * * @doc {heading: 'Tensors', subheading: 'Creation'} */ declare function oneHot_(indices: Tensor | TensorLike, depth: number, onValue?: number, offValue?: number, dtype?: DataType): Tensor; export declare const oneHot: typeof oneHot_; export {};