@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
51 lines (50 loc) • 1.7 kB
TypeScript
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/mod" />
import { Tensor } from '../tensor';
import { TensorLike } from '../types';
/**
* Returns the mod of a and b element-wise.
* `floor(x / y) * y + mod(x, y) = x`
* Supports broadcasting.
*
* We also expose `tf.modStrict` which has the same signature as this op and
* asserts that `a` and `b` are the same shape (does not broadcast).
*
* ```js
* const a = tf.tensor1d([1, 4, 3, 16]);
* const b = tf.tensor1d([1, 2, 9, 4]);
*
* a.mod(b).print(); // or tf.mod(a, b)
* ```
*
* ```js
* // Broadcast a mod b.
* const a = tf.tensor1d([2, 4, 6, 8]);
* const b = tf.scalar(5);
*
* a.mod(b).print(); // or tf.mod(a, b)
* ```
*
* @param a The first tensor.
* @param b The second tensor. Must have the same type as `a`.
*
* @doc {heading: 'Operations', subheading: 'Arithmetic'}
*/
declare function mod_<T extends Tensor>(a: Tensor | TensorLike, b: Tensor | TensorLike): T;
export declare const mod: typeof mod_;
export {};