@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
1,043 lines • 243 kB
JavaScript
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
// Empirically determined minimal shared dimension in matmul before we forward
// to a.mul(b).sum() in order to take advantage of GPU parallelism. See
// https://github.com/tensorflow/tfjs-core/pull/1379 for benchmarks.
// Copied from webgl backend.
// TODO(yassogba, annyuan) copy tests over to webgl backend that want to
// explicitly test this threshold.
export const MATMUL_SHARED_DIM_THRESHOLD = 1000;
import * as tf from '../index';
import { ALL_ENVS, describeWithFlags } from '../jasmine_util';
import { expectArraysClose, expectArraysEqual } from '../test_util';
describeWithFlags('matmul', ALL_ENVS, () => {
it('A x B', async () => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([2, 2]);
expectArraysClose(await c.data(), [0, 8, -3, 20]);
});
it('[8,4]x[4,8]', async () => {
const a = tf.tensor2d([
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 1, 2, 3, 4, 5, 6, 7, 8
], [8, 4]);
const b = tf.tensor2d([
0, 1, -3, 2, 1, -1, 0, 5, 6, 7, 8, 0, -2, -2, 1, 9,
11, 10, 0, 1, -3, 2, 1, -1, 1, 2, 3, 4, 5, 6, 7, 8
], [4, 8]);
const c = tf.matMul(a, b);
const cData = await c.data();
expect(c.shape).toEqual([8, 8]);
expectArraysClose(cData, [
49, 53, 25, 21, 8, 25, 33, 52, 121, 133, 57, 49, 12,
45, 69, 136, 193, 213, 89, 77, 16, 65, 105, 220, 265, 293,
121, 105, 20, 85, 141, 304, 337, 373, 153, 133, 24, 105, 177,
388, 409, 453, 185, 161, 28, 125, 213, 472, 49, 53, 25, 21,
8, 25, 33, 52, 121, 133, 57, 49, 12, 45, 69, 136
]);
});
it('broadcast with unequal batch dims', async () => {
const a = tf.tensor3d([
2, 1, 3, 2, 1, 1, 1, 5, 6, 7, 8, 1,
2, 2, 1, 9, 11, 10, 1, 1, 3, 2, 1, 1
], [4, 3, 2]);
const b = tf.tensor3d([1, 0.5], [1, 2, 1]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([4, 3, 1]);
expectArraysClose(await c.data(), [2.5, 4, 1.5, 3.5, 9.5, 8.5, 3, 5.5, 16, 1.5, 4, 1.5]);
});
it('broadcast with unequal ranks', async () => {
const a = tf.tensor5d([
2, 1, 3, 2, 1, 1, 1, 5, 6, 7, 8, 1,
2, 2, 1, 9, 11, 10, 1, 1, 3, 2, 1, 1
], [1, 2, 2, 3, 2]);
const b = tf.tensor2d([1, 0.5], [2, 1]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([1, 2, 2, 3, 1]);
expectArraysClose(await c.data(), [2.5, 4, 1.5, 3.5, 9.5, 8.5, 3, 5.5, 16, 1.5, 4, 1.5]);
});
it('matmul followed by mul', async () => {
const a = tf.tensor2d([1, 2, 3, 4], [2, 2]);
const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const c = tf.matMul(a, b);
const f = tf.tensor2d([0, 1, 0.5, 0, 0.25, 2], [2, 3]);
const d = tf.mul(c, f);
const dData = await d.data();
expect(d.shape).toEqual([2, 3]);
expectArraysClose(dData, [0, 12, 7.5, 0, 6.5, 66]);
});
it('upcasts when dtypes dont match', async () => {
const a = [1, 2, 3, 4, 5, 6];
const b = [0, 1, -3, 2, 2, 1];
let c = tf.matMul(tf.tensor(a, [2, 3], 'float32'), tf.tensor(b, [3, 2], 'int32'));
expect(c.shape).toEqual([2, 2]);
expect(c.dtype).toBe('float32');
expectArraysClose(await c.data(), [0, 8, -3, 20]);
c = tf.matMul(tf.tensor(a, [2, 3], 'int32'), tf.tensor(b, [3, 2], 'bool'));
expect(c.shape).toEqual([2, 2]);
expect(c.dtype).toBe('int32');
expectArraysClose(await c.data(), [5, 6, 11, 15]);
});
it('A x B^t', async () => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const b = tf.tensor2d([1, 0, 2, 4, 3, 0], [2, 3]);
const transposeA = false;
const transposeB = true;
const c = tf.matMul(a, b, transposeA, transposeB);
const expected = [7, 10, 16, 31];
expectArraysClose(await c.data(), expected);
});
it('A^t x B', async () => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const b = tf.tensor2d([1, 0, 2, 4, 3, 0], [2, 3]);
const transposeA = true;
const transposeB = false;
const c = tf.matMul(a, b, transposeA, transposeB);
const expected = [17, 12, 2, 22, 15, 4, 27, 18, 6];
expectArraysClose(await c.data(), expected);
});
it('A^t x B^t', async () => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const b = tf.tensor2d([1, 0, 2, 4, 3, 0], [2, 3]);
const transposeA = true;
const transposeB = true;
const c = tf.matMul(a, b, transposeA, transposeB);
const expected = [11, 13, 14, 20];
expectArraysClose(await c.data(), expected);
});
it('A x B^t shapes do not match', () => {
const a = tf.zeros([2, 3]);
const b = tf.zeros([3, 2]);
const f = () => {
const transposeA = false;
const transposeB = true;
tf.matMul(a, b, transposeA, transposeB);
};
expect(f).toThrowError();
});
it('A^t x B shapes do not match', () => {
const a = tf.zeros([2, 3]);
const b = tf.zeros([3, 2]);
const f = () => {
const transposeA = true;
const transposeB = false;
tf.matMul(a, b, transposeA, transposeB);
};
expect(f).toThrowError();
});
it('A^t x B^t shapes do not match', () => {
const a = tf.zeros([3, 2]);
const b = tf.zeros([3, 2]);
const f = () => {
const transposeA = true;
const transposeB = true;
tf.matMul(a, b, transposeA, transposeB);
};
expect(f).toThrowError();
});
it('matmul throws when inner dimensions dont match', () => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const b = tf.tensor2d([0, 1, -3, 2, 2, 1, 2, 2], [4, 2]);
expect(() => tf.matMul(a, b)).toThrowError();
});
it('matmul throws when passed non matrices', () => {
// tslint:disable-next-line:no-any
const a = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 2]);
const b = tf.tensor2d([0, 1, -3, 2, 2, 1, 2, 2], [4, 2]);
expect(() => tf.matMul(a, b)).toThrowError();
expect(() => tf.matMul(b, a)).toThrowError();
});
it('matmul throws when passed a vector', () => {
// tslint:disable-next-line:no-any
const v = tf.tensor1d([2, 3]);
const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]);
expect(() => tf.matMul(matrix, v)).toThrowError();
});
it('Vector times matrix', async () => {
const v = tf.tensor1d([2, 3]);
const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]);
const result = tf.dot(v, matrix);
const expected = [11, 16];
expectArraysClose(await result.data(), expected);
});
it('Vector times matrix with implicit reshape', async () => {
const v = tf.tensor1d([2, 3]);
const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]);
const result = tf.dot(v, matrix);
const expected = [11, 16];
expectArraysClose(await result.data(), expected);
});
it('Matrix times vector', async () => {
const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]);
const v = tf.tensor1d([2, 3]);
const result = tf.dot(matrix, v);
const expected = [8, 18];
expectArraysClose(await result.data(), expected);
});
it('batched matmul with the matrices being vectors', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.tensor(values, [batch, 1, sharedDim]);
const b = tf.tensor(values, [batch, sharedDim, 1]);
const result = tf.matMul(a, b);
expect(result.shape).toEqual([batch, 1, 1]);
expectArraysClose(await result.data(), [4, 0, 0]);
});
it('batched matmul called twice so memory of output is reused', async () => {
const batch = 3;
const n = 2;
const vals = new Float32Array(batch * n * n);
vals[0] = 2;
vals[4] = 3;
vals[8] = 4;
const a = tf.tensor(vals, [batch, n, n]);
const b = tf.tensor(vals, [batch, n, n]);
const result = tf.matMul(a, b);
expect(result.shape).toEqual([batch, n, n]);
expectArraysClose(await result.data(), [4, 0, 0, 0, 9, 0, 0, 0, 16, 0, 0, 0]);
// Dispose the first output, so memory of the second output (which has the
// same shape), could be reused.
result.dispose();
const vals2 = new Float32Array(batch * n * n);
vals2[3] = 2;
vals2[7] = 3;
vals2[11] = 4;
const a2 = tf.tensor(vals2, [batch, n, n]);
const b2 = tf.tensor(vals2, [batch, n, n]);
const result2 = tf.matMul(a2, b2);
expect(result2.shape).toEqual([batch, n, n]);
expectArraysClose(await result2.data(), [0, 0, 0, 4, 0, 0, 0, 9, 0, 0, 0, 16]);
});
it('batched matmul with the matrices being vectors transposedA', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.tensor(values, [batch, sharedDim, 1]);
const b = tf.tensor(values, [batch, sharedDim, 1]);
const transposeA = true;
const transposeB = false;
const result = tf.matMul(a, b, transposeA, transposeB);
expect(result.shape).toEqual([batch, 1, 1]);
expectArraysClose(await result.data(), [4, 0, 0]);
});
it('batched matmul with the matrices being vectors transposedB', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.tensor(values, [batch, 1, sharedDim]);
const b = tf.tensor(values, [batch, 1, sharedDim]);
const transposeA = false;
const transposeB = true;
const result = tf.matMul(a, b, transposeA, transposeB);
expect(result.shape).toEqual([batch, 1, 1]);
expectArraysClose(await result.data(), [4, 0, 0]);
});
it('batched matmul with matrix x vector', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.ones([batch, 2, sharedDim]);
const b = tf.tensor(values, [batch, sharedDim, 1]);
const result = tf.matMul(a, b);
expect(result.shape).toEqual([batch, 2, 1]);
expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]);
});
it('batched matmul with matrix x vector transposedA', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.ones([batch, sharedDim, 2]);
const b = tf.tensor(values, [batch, sharedDim, 1]);
const transposeA = true;
const transposeB = false;
const result = tf.matMul(a, b, transposeA, transposeB);
expect(result.shape).toEqual([batch, 2, 1]);
expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]);
});
it('batched matmul with matrix x vector transposedB', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.ones([batch, 2, sharedDim]);
const b = tf.tensor(values, [batch, 1, sharedDim]);
const transposeA = false;
const transposeB = true;
const result = tf.matMul(a, b, transposeA, transposeB);
expect(result.shape).toEqual([batch, 2, 1]);
expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]);
});
it('batched matmul with vector x matrix', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.tensor(values, [batch, 1, sharedDim]);
const b = tf.ones([batch, sharedDim, 2]);
const result = tf.matMul(a, b);
expect(result.shape).toEqual([batch, 1, 2]);
expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]);
});
it('batched matmul with vector x matrix transposedA', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.tensor(values, [batch, sharedDim, 1]);
const b = tf.ones([batch, sharedDim, 2]);
const transposeA = true;
const transposeB = false;
const result = tf.matMul(a, b, transposeA, transposeB);
expect(result.shape).toEqual([batch, 1, 2]);
expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]);
});
it('batched matmul with vector x matrix transposedB', async () => {
const batch = 3;
const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1;
const values = new Float32Array(batch * sharedDim);
values[10] = 2;
const a = tf.tensor(values, [batch, 1, sharedDim]);
const b = tf.ones([batch, 2, sharedDim]);
const transposeA = false;
const transposeB = true;
const result = tf.matMul(a, b, transposeA, transposeB);
expect(result.shape).toEqual([batch, 1, 2]);
expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]);
});
it('Matrix * vector propagates NaNs', async () => {
const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]);
const v = tf.tensor1d([2, NaN]);
const result = tf.dot(matrix, v);
const expected = [NaN, NaN];
expectArraysClose(await result.data(), expected);
});
it('matrix times vector throws when not passed a matrix', () => {
const v = tf.tensor1d([2, 3]);
// tslint:disable-next-line:no-any
const matrix = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2]);
expect(() => tf.dot(matrix, v)).toThrowError();
});
it('Dot product', async () => {
const v1 = tf.tensor1d([2, 3]);
const v2 = tf.tensor1d([2, 1]);
const result = tf.dot(v1, v2);
expectArraysClose(await result.data(), [7]);
});
it('Dot product propagates NaNs', async () => {
const v1 = tf.tensor1d([2, NaN]);
const v2 = tf.tensor1d([2, 1]);
const result = tf.dot(v1, v2);
expectArraysEqual(await result.data(), [NaN]);
});
it('Dot product throws when vectors are different size', () => {
const v1 = tf.tensor1d([2, 3, 3]);
const v2 = tf.tensor1d([2, 1]);
expect(() => tf.dot(v1, v2)).toThrowError();
expect(() => tf.dot(v2, v1)).toThrowError();
});
it('Outer product', async () => {
const v1 = tf.tensor1d([2, 3]);
const v2 = tf.tensor1d([2, 1]);
const result = tf.outerProduct(v1, v2);
const expected = [4, 2, 6, 3];
expect(result.shape).toEqual([2, 2]);
expectArraysClose(await result.data(), expected);
});
it('outer product accepts a tensor-like object', async () => {
const v1 = [2, 3];
const v2 = [2, 1];
const result = tf.outerProduct(v1, v2);
const expected = [4, 2, 6, 3];
expect(result.shape).toEqual([2, 2]);
expectArraysClose(await result.data(), expected);
});
it('gradients: A * B', async () => {
const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [2, 3]);
const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]);
const dyT = tf.tensor2d([1, 10, 20, 30], [2, 2]);
const transposeA = false;
const transposeB = false;
const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB));
const [da, db] = grads([aT, bT], dyT);
// da = dy * bT
expect(da.shape).toEqual(aT.shape);
const a = await aT.buffer();
const dy = await dyT.buffer();
const b = await bT.buffer();
expectArraysClose(await da.data(), [
dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(0, 1),
dy.get(0, 0) * b.get(1, 0) + dy.get(0, 1) * b.get(1, 1),
dy.get(0, 0) * b.get(2, 0) + dy.get(0, 1) * b.get(2, 1),
dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(0, 1),
dy.get(1, 0) * b.get(1, 0) + dy.get(1, 1) * b.get(1, 1),
dy.get(1, 0) * b.get(2, 0) + dy.get(1, 1) * b.get(2, 1)
], 1e-1);
// db = aT * dy
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
a.get(0, 0) * dy.get(0, 0) + a.get(1, 0) * dy.get(1, 0),
a.get(0, 0) * dy.get(0, 1) + a.get(1, 0) * dy.get(1, 1),
a.get(0, 1) * dy.get(0, 0) + a.get(1, 1) * dy.get(1, 0),
a.get(0, 1) * dy.get(0, 1) + a.get(1, 1) * dy.get(1, 1),
a.get(0, 2) * dy.get(0, 0) + a.get(1, 2) * dy.get(1, 0),
a.get(0, 2) * dy.get(0, 1) + a.get(1, 2) * dy.get(1, 1)
]);
});
it('gradient with clones', () => {
const a = tf.tensor2d([1, 2, 3, 10, 20, 30], [2, 3]);
const b = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]);
const grads = tf.grads((a, b) => tf.matMul(a.clone(), b.clone()).clone());
const [da, db] = grads([a, b]);
expect(da.shape).toEqual(a.shape);
expect(db.shape).toEqual(b.shape);
});
it('gradients: a * bT', async () => {
const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [3, 2]);
const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]);
const dyT = tf.tensor2d([1, 10, 20, 30, 40, 50, 60, 70, 80], [3, 3]);
const transposeA = false;
const transposeB = true;
const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB));
const [da, db] = grads([aT, bT], dyT);
// da = dy * b
expect(da.shape).toEqual(aT.shape);
const a = await aT.buffer();
const dy = await dyT.buffer();
const b = await bT.buffer();
expectArraysClose(await da.data(), [
dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(1, 0) +
dy.get(0, 2) * b.get(2, 0),
dy.get(0, 0) * b.get(0, 1) + dy.get(0, 1) * b.get(1, 1) +
dy.get(0, 2) * b.get(2, 1),
dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(1, 0) +
dy.get(1, 2) * b.get(2, 0),
dy.get(1, 0) * b.get(0, 1) + dy.get(1, 1) * b.get(1, 1) +
dy.get(1, 2) * b.get(2, 1),
dy.get(2, 0) * b.get(0, 0) + dy.get(2, 1) * b.get(1, 0) +
dy.get(2, 2) * b.get(2, 0),
dy.get(2, 0) * b.get(0, 1) + dy.get(2, 1) * b.get(1, 1) +
dy.get(2, 2) * b.get(2, 1)
]);
// db = dyT * a
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
dy.get(0, 0) * a.get(0, 0) + dy.get(1, 0) * a.get(1, 0) +
dy.get(2, 0) * a.get(2, 0),
dy.get(0, 0) * a.get(0, 1) + dy.get(1, 0) * a.get(1, 1) +
dy.get(2, 0) * a.get(2, 1),
dy.get(0, 1) * a.get(0, 0) + dy.get(1, 1) * a.get(1, 0) +
dy.get(2, 1) * a.get(2, 0),
dy.get(0, 1) * a.get(0, 1) + dy.get(1, 1) * a.get(1, 1) +
dy.get(2, 1) * a.get(2, 1),
dy.get(0, 2) * a.get(0, 0) + dy.get(1, 2) * a.get(1, 0) +
dy.get(2, 2) * a.get(2, 0),
dy.get(0, 2) * a.get(0, 1) + dy.get(1, 2) * a.get(1, 1) +
dy.get(2, 2) * a.get(2, 1)
]);
});
it('gradients: aT * b', async () => {
const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [3, 2]);
const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]);
const dyT = tf.tensor2d([1, 10, 20, 30], [2, 2]);
const transposeA = true;
const transposeB = false;
const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB));
const [da, db] = grads([aT, bT], dyT);
// da = b * dyT
expect(da.shape).toEqual(aT.shape);
const a = await aT.buffer();
const dy = await dyT.buffer();
const b = await bT.buffer();
expectArraysClose(await da.data(), [
dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(0, 1),
dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(0, 1),
dy.get(0, 0) * b.get(1, 0) + dy.get(0, 1) * b.get(1, 1),
dy.get(1, 0) * b.get(1, 0) + dy.get(1, 1) * b.get(1, 1),
dy.get(0, 0) * b.get(2, 0) + dy.get(0, 1) * b.get(2, 1),
dy.get(1, 0) * b.get(2, 0) + dy.get(1, 1) * b.get(2, 1)
]);
// db = a * dy
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
dy.get(0, 0) * a.get(0, 0) + dy.get(1, 0) * a.get(0, 1),
dy.get(0, 1) * a.get(0, 0) + dy.get(1, 1) * a.get(0, 1),
dy.get(0, 0) * a.get(1, 0) + dy.get(1, 0) * a.get(1, 1),
dy.get(0, 1) * a.get(1, 0) + dy.get(1, 1) * a.get(1, 1),
dy.get(0, 0) * a.get(2, 0) + dy.get(1, 0) * a.get(2, 1),
dy.get(0, 1) * a.get(2, 0) + dy.get(1, 1) * a.get(2, 1)
]);
});
it('gradients: aT * bT', async () => {
const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [3, 2]);
const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [2, 3]);
const dyT = tf.tensor2d([1, 10, 20, 30], [2, 2]);
const transposeA = true;
const transposeB = true;
const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB));
const [da, db] = grads([aT, bT], dyT);
// da = bT * dyT
expect(da.shape).toEqual(aT.shape);
const a = await aT.buffer();
const dy = await dyT.buffer();
const b = await bT.buffer();
expectArraysClose(await da.data(), [
dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(1, 0),
dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(1, 0),
dy.get(0, 0) * b.get(0, 1) + dy.get(0, 1) * b.get(1, 1),
dy.get(1, 0) * b.get(0, 1) + dy.get(1, 1) * b.get(1, 1),
dy.get(0, 0) * b.get(0, 2) + dy.get(0, 1) * b.get(1, 2),
dy.get(1, 0) * b.get(0, 2) + dy.get(1, 1) * b.get(1, 2)
]);
// db = dyT * aT
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
dy.get(0, 0) * a.get(0, 0) + dy.get(1, 0) * a.get(0, 1),
dy.get(0, 0) * a.get(1, 0) + dy.get(1, 0) * a.get(1, 1),
dy.get(0, 0) * a.get(2, 0) + dy.get(1, 0) * a.get(2, 1),
dy.get(0, 1) * a.get(0, 0) + dy.get(1, 1) * a.get(0, 1),
dy.get(0, 1) * a.get(1, 0) + dy.get(1, 1) * a.get(1, 1),
dy.get(0, 1) * a.get(2, 0) + dy.get(1, 1) * a.get(2, 1)
]);
});
it('throws when passed a as a non-tensor', () => {
expect(() => tf.matMul({}, tf.tensor2d([2], [1, 1])))
.toThrowError(/Argument 'a' passed to 'matMul' must be a Tensor/);
});
it('throws when passed b as a non-tensor', () => {
expect(() => tf.matMul(tf.tensor2d([2], [1, 1]), {}))
.toThrowError(/Argument 'b' passed to 'matMul' must be a Tensor/);
});
it('accepts a tensor-like object', async () => {
const a = [[1, 2, 3], [4, 5, 6]]; // 2x3
const b = [[0, 1], [-3, 2], [2, 1]]; // 3x2
const c = tf.matMul(a, b);
expect(c.shape).toEqual([2, 2]);
expectArraysClose(await c.data(), [0, 8, -3, 20]);
});
it('accepts a tensor-like object chained', async () => {
const a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3]); // 2x3
const b = [[0, 1], [-3, 2], [2, 1]]; // 3x2
const c = a.matMul(b);
expect(c.shape).toEqual([2, 2]);
expectArraysClose(await c.data(), [0, 8, -3, 20]);
});
it('a * b where a has zero in its shape', async () => {
const a = tf.tensor2d([], [0, 3]);
const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([0, 2]);
expect(c.rank).toBe(2);
expect(c.size).toBe(0);
expectArraysClose(await c.data(), []);
});
it('(a * b) * c where a has zero in its shape, so a*b does also', async () => {
const a = tf.tensor2d([], [0, 3]);
const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const ab = tf.matMul(a, b);
expect(ab.shape).toEqual([0, 2]);
expectArraysClose(await ab.data(), []);
const c = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const res = tf.matMul(ab, c);
expect(res.shape).toEqual([0, 3]);
expectArraysClose(await res.data(), []);
});
it('throws error for string tensor', () => {
expect(() => tf.matMul([['a']], [['b']]))
.toThrowError(/Argument 'a' passed to 'matMul' must be numeric tensor/);
});
});
describeWithFlags('matmulBatch', ALL_ENVS, () => {
it('A x B', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 2, 3]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 3, 2]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([5, 2, 2]);
expectArraysClose(await c.data(), [
87, 20, -6, -32, -24, -50, -36, -5, 24, 98,
70, 33, -64, 47, -42, -28, -71, 24, 37, 5
]);
});
it('A x B in 4D', async () => {
const a = tf.tensor4d([
-2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8,
-7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1,
9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3,
-2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3,
-7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4,
6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8,
10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2,
3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1
], [4, 5, 2, 3]);
const b = tf.tensor4d([
-4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1,
-4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5,
9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6,
-3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6,
6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8,
-3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4,
-4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4,
1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6
], [4, 5, 3, 2]);
const transposeA = false;
const transposeB = false;
const c = tf.matMul(a, b, transposeA, transposeB);
expectArraysClose(await c.data(), [
32, -17, 68, -12, -15, 14, 5, -46, 96, 32, 46, -17, 78, -85,
-28, 46, 94, -35, 0, -13, 31, -52, 17, -87, 96, 47, 32, -2,
-6, 105, 40, -2, 63, 76, 17, 30, 56, -66, -21, 23, -144, 41,
22, 8, 118, -106, -88, -6, -17, 2, 2, -26, 8, -63, -38, -108,
-84, -30, -35, 49, 16, -12, -14, -12, 48, 132, 4, 102, 32, 66,
-4, 33, -13, 1, -40, -25, -3, 61, -18, -20
]);
});
it('A x B^t', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 2, 3]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 2, 3]);
const transposeA = false;
const transposeB = true;
const c = tf.matMul(a, b, transposeA, transposeB);
expect(c.shape).toEqual([5, 2, 2]);
expectArraysClose(await c.data(), [
66, 35, -48, 14, -45, -33, -12, 7, -76, 64,
3, 66, -119, -9, -64, -60, -76, 48, 33, -16
]);
});
it('A^t x B', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 2, 3]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 2, 3]);
const transposeA = true;
const transposeB = false;
const c = tf.matMul(a, b, transposeA, transposeB);
expectArraysClose(await c.data(), [
40, -36, 5, 40, 34, 5, 48, 80, 6, -6, 21, -48, -23, -20, -50,
-12, -21, -12, -58, 15, -96, 23, 6, 39, 20, 109, 42, -67, 45, -40,
76, -52, 40, -15, 1, -60, -58, -3, 36, 40, -6, -24, 51, -33, -28
]);
});
it('A^t x B in 4D', async () => {
const a = tf.tensor4d([
-2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8,
-7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1,
9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3,
-2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3,
-7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4,
6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8,
10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2,
3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1
], [4, 5, 2, 3]);
const b = tf.tensor4d([
-4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1,
-4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5,
9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6,
-3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6,
6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8,
-3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4,
-4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4,
1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6
], [4, 5, 2, 3]);
const transposeA = true;
const transposeB = false;
const c = tf.matMul(a, b, transposeA, transposeB);
expectArraysClose(await c.data(), [
38, -24, 9, -30, 9, -9, -74, 39, -19, 8, 11, -30, 56, -67,
46, -40, 71, -74, 82, 42, 55, -50, 6, 1, 60, -18, -13, -15,
-52, -61, 81, -52, 59, -15, 76, 43, 34, -56, 38, 0, 26, -14,
-15, 1, -4, 153, -34, 61, -135, 30, -48, 135, -30, 60, 38, 36,
58, 40, 45, 71, 1, 2, 3, 24, 90, -56, -10, 40, -18, 6,
-30, 14, 34, 65, 27, 24, -29, -44, -46, -3, 35, -21, 27, 48,
20, 52, 32, 35, -11, -46, -12, 22, 13, 30, 2, -23, -54, -48,
34, 16, -42, -39, -26, 82, 89, 76, -84, 30, 9, 27, 30, -21,
-43, -48, 60, 20, 24, -78, -91, -63, -12, 24, 21, 28, 48, 35,
-6, 27, 33, 53, -81, -71, 61, -27, 11, -48, -82, 8, -12, -19,
-10, -48, -81, 0, 13, 32, 41, 0, -100, -120, 16, 124, 152, 45,
60, -28, 24, 21, -12, -14, -16, 8, 9, -33, 5, -12, -48, 4,
8, 9, 0, -31, 16, -98, -9, 4, -22, 38, 2, -96
]);
});
it('A^t x B^t', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 3, 2]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 2, 3]);
const transposeA = true;
const transposeB = true;
const c = tf.matMul(a, b, transposeA, transposeB);
expectArraysClose(await c.data(), [
66, 42, 16, -56, -12, 6, -30, 19, -1, 102,
-94, 14, -56, 32, 100, -56, -47, -11, 5, -31
]);
});
it('A has more batch dimensions than B', async () => {
const a = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [2, 2, 2, 2]);
const b = tf.tensor3d([1, 2, 3, 4], [2, 2, 1]);
const c = tf.matMul(a, b);
expectArraysClose(await c.data(), [5, 11, 39, 53, 29, 35, 95, 109]);
});
it('batch dimensions do not match', () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3,
7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6
], [4, 3, 2]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 2, 3]);
const f = () => {
tf.matMul(a, b, false, false);
};
expect(f).toThrowError();
});
it('gradients: A x B', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 2, 3]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 3, 2]);
const dy = tf.tensor3d([8, 2, -3, -2, -8, 4, 5, 7, 4, -4, -4, 5, 8, 10, 1, 0, 6, 6, -4, 7], [5, 2, 2]);
const grads = tf.grads((a, b) => tf.matMul(a, b, false, false));
const [da, db] = grads([a, b], dy);
// da = dy * bT
expect(da.shape).toEqual(a.shape);
expectArraysClose(await da.data(), [
-72, -8, -56, 32, 3, 21, -12, -40, 40, 36, 44, 51, -52, -44, -4,
61, 49, 13, -2, -10, -108, -9, 0, -1, -24, 60, -6, 49, 26, -40
]);
// db = aT * dy
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
-64, -26, -34, -6, -24, 4, -77, -47, 51, -35, 63, -3, 52, -58, -20,
23, -12, 20, 60, 70, -68, -80, 14, 10, 44, -11, -32, -10, -46, -68
]);
});
it('4d gradients: A x B', async () => {
const a = tf.tensor4d([
-2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8,
-7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1,
9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3,
-2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3,
-7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4,
6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8,
10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2,
3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1
], [4, 5, 2, 3]);
const b = tf.tensor4d([
-4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1,
-4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5,
9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6,
-3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6,
6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8,
-3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4,
-4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4,
1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6
], [4, 5, 3, 2]);
const dy = tf.tensor4d([
8, -7, 0, -9, -5, -5, 0, 3, 7, -4, 6, -8, -8, 0, -1, -8,
-9, -7, -4, -9, 2, 3, 5, 8, -5, -7, 3, -10, -5, -9, -5, 1,
7, 1, -9, -10, 8, 5, 0, 8, -6, 4, 0, -5, 8, -7, -2, 1,
-8, 9, 9, -7, 1, 7, -2, 5, -2, 9, 1, -5, 7, 5, -7, -6,
6, 7, -8, 7, 4, -5, 4, -5, 3, -4, -5, 4, -6, 3, -8, 10
], [4, 5, 2, 2]);
const grads = tf.grads((a, b) => tf.matMul(a, b, false, false));
const [da, db] = grads([a, b], dy);
// da = dy * bT
expect(da.shape).toEqual(a.shape);
expectArraysClose(await da.data(), [
-11, 26, 55, 27, 54, 9, 25, -15, 5, -3, -12, -27, -63, 9,
-14, -54, 26, 20, 24, 56, 64, 35, -41, 0, 11, 30, -37, -1,
31, 13, 12, 37, 2, 29, 97, 6, 60, 47, 31, 35, -14, 24,
100, -3, -9, 0, -33, 1, 49, 9, -33, -124, -29, 86, -9, -11,
-6, -40, 72, -48, -20, 48, -72, -20, -30, 15, -72, 136, 87, 12,
-28, -21, 9, 37, 1, -32, -51, 2, -65, -49, -1, -41, -16, 2,
-95, -31, -36, 52, 18, 20, -63, 34, 72, 70, -38, -78, -66, -27,
-111, -10, 85, 1, -21, -21, -4, -21, -21, -4, -12, 20, 13, -4,
-20, -19, -30, 81, 30, -40, 150, 76
]);
// db = aT * dy
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
-16, 59, 24, -48, 40, -116, 15, 18, 25, -2, -5, 22, -84, 80,
36, -16, -38, 8, -74, -16, 46, -80, 62, 48, 96, 110, 38, 6,
-77, -54, 58, 91, -57, -90, 45, 70, 46, 36, 20, 99, -3, 10,
55, 79, -10, 42, 5, -31, 85, 47, -74, -89, 37, 75, -48, -38,
-64, -8, 32, 44, 42, -53, -48, 47, 42, -18, -30, 27, 70, -62,
36, -24, 78, -69, -112, 101, -40, 20, -11, 113, -9, -6, 1, -50,
3, -12, -16, 71, -14, 67, 84, 62, 21, 17, 84, 63, -16, -35,
-28, 98, 4, -126, 40, -50, 36, -45, -16, 20, 19, -12, 8, 0,
3, -4, 34, -65, 10, -17, -46, 17
]);
});
it('gradients: A x B^t', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 3, 2]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 3, 2]);
const dy = tf.tensor3d([
-0, 7, 5, 0, -9, 5, -7, 6, -5, -3, -2, -2, -4, 10, -3,
5, -1, 3, -2, -9, 4, -5, 7, 9, -10, -8, -8, -5, -0, -1,
3, 3, 4, 9, -7, 6, -2, -9, 5, 1, -5, -3, -1, 9, 4
], [5, 3, 3]);
const grads = tf.grads((a, b) => tf.matMul(a, b, false, true));
const [da, db] = grads([a, b], dy);
expect(da.shape).toEqual(a.shape);
expectArraysClose(await da.data(), [
-42, 0, -26, 0, 85, 28, -19, -29, 51, -16, 6, 37, 94, -27, 50,
71, 24, -202, 46, -25, -31, -22, -87, 10, -7, -80, -36, -15, 55, 35
]);
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
14, 56, 7, -155, -45, 55, 7, 72, -67, -79, 7, 50, -69, -46, -52,
-88, 49, -126, -68, 106, 31, -30, -27, 60, -19, 5, 27, 43, 55, -13
]);
});
it('4d gradients: A x B^t', async () => {
const a = tf.tensor4d([
-2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8,
-7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1,
9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3,
-2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3,
-7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4,
6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8,
10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2,
3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1
], [4, 5, 3, 2]);
const b = tf.tensor4d([
-4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1,
-4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5,
9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6,
-3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6,
6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8,
-3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4,
-4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4,
1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6
], [4, 5, 3, 2]);
const dy = tf.tensor4d([
5, -1, -5, -4, -1, 9, 1, -2, 10, 7, -1, 6, -8, 8, -3,
9, -4, 2, -4, -8, 8, 4, 8, -10, -8, -8, 6, 6, -5, 9,
-1, -7, -5, -3, -3, 2, -6, 5, 8, -9, 5, -8, -3, 8, 6,
2, 8, 5, 9, 7, 6, 2, -3, 10, 7, 7, -3, 4, -3, -6,
-8, -8, 9, 0, -8, -3, -2, -2, 8, 2, 3, -6, 3, 6, -3,
7, 7, -9, -3, 8, 7, 7, -1, -6, 5, 2, -1, -1, 1, 5,
0, -4, 3, -4, -10, 1, -2, -8, -9, -6, 4, 4, -7, -1, -1,
-9, 7, 1, -1, 8, 0, -2, -7, 5, 7, 8, 9, -3, -8, -6,
-7, -8, -1, 8, -4, 7, 5, -9, 9, 3, 0, -10, 7, -9, 4,
-7, 5, -2, -2, 3, 3, -6, 2, 0, 8, -5, -10, 3, -7, 0,
-6, 2, 3, -1, 3, 3, -10, 1, 3, -7, -1, 8, -2, -1, -1,
-3, -9, 7, 4, -6, 3, 0, -7, -4, -5, -8, -6, 10, -6, 4
], [4, 5, 3, 3]);
const grads = tf.grads((a, b) => tf.matMul(a, b, false, true));
const [da, db] = grads([a, b], dy);
expect(da.shape).toEqual(a.shape);
expectArraysClose(await da.data(), [
-48, -4, 72, 9, 60, -1, 13, -57, 64, 3, -48, -11, -4, -24,
16, 38, 44, -10, -55, -45, 92, -43, 14, -4, 71, -61, -51, 16,
46, -57, 48, 78, 104, 57, -17, -11, -85, -33, 16, 1, 86, 21,
-48, 21, -8, 34, 14, -35, 36, 48, 85, 108, -38, -40, 3, -8,
-7, -1, 6, -16, 46, -33, 26, -79, -70, -29, 92, -84, -6, -47,
98, -129, -55, -17, 79, 40, -118, -64, 68, 75, 71, 111, 5, -48,
98, -36, 21, 13, 112, -34, 26, 57, 32, 44, 28, 50, 88, 27,
44, -39, -16, 15, -21, -6, -67, -89, -46, -64, -19, -12, -3, 11,
41, 63, 78, -73, 67, -92, 102, -18
]);
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
-27, 44, -9, -16, 85, 30, -110, 38, 47, -23, -39, -15, 0, -76,
-8, -128, 26, 136, 31, -26, -26, 39, 136, -85, -45, 93, 37, -68,
-112, -6, 90, 70, 169, -7, 15, 68, -16, -33, -16, -47, -21, 0,
6, -4, 84, 24, 15, 20, -41, -1, 79, -86, 87, -23, -26, -64,
18, 9, 52, 64, 34, -16, 122, -66, -1, 47, 1, 43, -11, -33,
-17, 27, -45, -73, -60, -66, -92, -42, 32, -85, -44, -44, -28, -13,
8, -20, 9, -9, -49, 79, -76, 15, 73, -7, 7, -8, -110, 93,
106, -39, 64, -84, -29, -19, 13, 14, 63, 2, -15, 23, 17, 49,
-3, -31, -65, 30, -95, 63, -82, 40
]);
});
it('gradients: A^t x B', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 3, 2]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 3, 2]);
const dy = tf.tensor3d([8, 2, -3, -2, -8, 4, 5, 7, 4, -4, -4, 5, 8, 10, 1, 0, 6, 6, -4, 7], [5, 2, 2]);
const grads = tf.grads((a, b) => tf.matMul(a, b, true, false));
const [da, db] = grads([a, b], dy);
expect(da.shape).toEqual(a.shape);
expectArraysClose(await da.data(), [
-72, 32, -8, 3, -56, 21, -12, 36, -40, 44, 40, 51, -52, 61, -44,
49, -4, 13, -2, -9, -10, 0, -108, -1, -24, 49, 60, 26, -6, -40
]);
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
-25, 0, -72, -28, 8, 12, -67, -33, 3, -87, 23, 17, 36, -38, 44,
-50, -20, 28, 48, 70, 12, 10, -26, -40, 40, -4, -34, -89, 20, -2
]);
});
it('gradients: A^t x B^t', async () => {
const a = tf.tensor3d([
-5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5,
-6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2
], [5, 3, 2]);
const b = tf.tensor3d([
-8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6,
5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4
], [5, 2, 3]);
const dy = tf.tensor3d([8, 2, -3, -2, -8, 4, 5, 7, 4, -4, -4, 5, 8, 10, 1, 0, 6, 6, -4, 7], [5, 2, 2]);
const grads = tf.grads((a, b) => tf.matMul(a, b, true, true));
const [da, db] = grads([a, b], dy);
expect(da.shape).toEqual(a.shape);
expectArraysClose(await da.data(), [
-64, 24, -46, 26, -8, 3, -16, 29, -28, 8, -16, 86, -36, 41, 4,
4, -60, 69, -82, -9, 46, 7, -100, 0, -6, 70, 36, 9, 0, -44
]);
expect(db.shape).toEqual(b.shape);
expectArraysClose(await db.data(), [
-25, -72, 8, 0, -28, 12, -67, 3, 23, -33, -87, 17, 36, 44, -20,
-38, -50, 28, 48, 12, -26, 70, 10, -40, 40, -34, 20, -4, -89, -2
]);
});
});
describeWithFlags('dot', ALL_ENVS, () => {
let a;
let b;
let c;
let d;
let e;
let f;
beforeEach(() => {
a = tf.tensor1d([1, 2]);
b = tf.tensor2d([[1, 2], [3, 4]]);
c = tf.tensor2d([[1, 2, 3], [4, 5, 6]]);
d = tf.tensor3d([1, 2], [1, 1, 2]);
e = tf.scalar(1);
f = tf.tensor3d([1, 2, 1, 2], [2, 1, 2]);
});
it('vector-vector', async () => {
const aa = tf.dot(a, a);
expectArraysClose(await aa.data(), [5]);
expect(aa.shape).toEqual([]);
});
it('vector-matrix', async () => {
const ab = tf.dot(a, b);
const ac = tf.dot(a, c);
expect(ab.shape).toEqual([2]);
expect(ac.shape).toEqual([3]);
expectArraysClose(await ab.data(), [7, 10]);
expectArraysClose(await ac.data(), [9, 12, 15]);
});
it('matrix-vector', async () => {
const ba = b.dot(a);
expect(ba.shape).toEqual([2]);
expectArraysClose(await ba.data(), [5, 11]);
});
it('matrix-matrix', async () => {
const bb = tf.dot(b, b);
const bc = tf.dot(b, c);
expect(bb.shape).toEqual([2, 2]);
expect(bc.shape).toEqual([2, 3]);
expectArraysClose(await bb.data(), [7, 10, 15, 22]);
expectArraysClose(await bc.data(), [9, 12, 15, 19, 26, 33]);
});
it('matmul A x B asymmetric', async () => {
const a = tf.tensor2d([1, 2, 3, 4], [2, 2]);
const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const c = tf.matMul(a, b);
const cData = await c.data();
expect(c.shape).toEqual([2, 3]);
expectArraysClose(cData, [9, 12, 15, 19, 26, 33]);
});
it('broadcast batch shape', async () => {
const a = tf.tensor3d([1, 2, 3, 4], [1, 2, 2]);
const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const c = tf.matMul(a, b);
const cData = await c.data();
expect(c.shape).toEqual([1, 2, 3]);
expectArraysClose(cData, [9, 12, 15, 19, 26, 33]);
});
it('throws error on incompatible dimensions', () => {
expect(() => tf.dot(c, f)).toThrowError();
});
it('throws error when inputs are not rank 1 or 2', () => {
expect(() => tf.dot(a, d)).toThrowError();
expect(() => tf.dot(a, e)).toThrowError();
});
it('accepts a tensor-like object', async () => {
const a = [1, 2, 3];
const res = tf.dot(a, a);
expectArraysClose(await res.data(), [14]);
expect(res.shape).toEqual([]);
});
it('throws error for string tensors', () => {
expect(() => tf.dot('a', 'b'))
.toThrowError(/Argument 't1' passed to 'dot' must be numeric tensor/);
});
it('ensure no memory leak', async () => {
const numTensorsBefore = tf.memory().numTensors;
const numDataIdBefore = tf.engine().backend.numDataIds();
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([2, 2]);
expectArraysClose(await c.data(), [0, 8, -3, 20]);
a.dispose();
b.dispose();
c.dispose();
const numTensorsAfter = tf.memory().numTensors;
const numDataIdAfter = tf.engine().backend.numDataIds();
expect(numTensorsAfter).toBe(numTensorsBefore);
expect(numDataIdAfter).toBe(numDataIdBefore);
});
});
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF0X211bF90ZXN0LmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvbWF0X211bF90ZXN0LnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILDhFQUE4RTtBQUM5RSx1RUFBdUU7QUFDdkUsb0VBQW9FO0FBQ3BFLDZCQUE2QjtBQUM3Qix3RUFBd0U7QUFDeEUsa0NBQWtDO0FBQ2xDLE1BQU0sQ0FBQyxNQUFNLDJCQUEyQixHQUFHLElBQUksQ0FBQztBQUVoRCxPQUFPLEtBQUssRUFBRSxNQUFNLFVBQVUsQ0FBQztBQUMvQixPQUFPLEVBQUMsUUFBUSxFQUFFLGlCQUFpQixFQUFDLE1BQU0saUJBQWlCLENBQUM7QUFDNUQsT0FBTyxFQUFDLGlCQUFpQixFQUFFLGlCQUFpQixFQUFDLE1BQU0sY0FBYyxDQUFDO0FBR2xFLGlCQUFpQixDQUFDLFFBQVEsRUFBRSxRQUFRLEVBQUUsR0FBRyxFQUFFO0lBQ3pDLEVBQUUsQ0FBQyxPQUFPLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDckIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQ