UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

1,043 lines 243 kB
/** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ // Empirically determined minimal shared dimension in matmul before we forward // to a.mul(b).sum() in order to take advantage of GPU parallelism. See // https://github.com/tensorflow/tfjs-core/pull/1379 for benchmarks. // Copied from webgl backend. // TODO(yassogba, annyuan) copy tests over to webgl backend that want to // explicitly test this threshold. export const MATMUL_SHARED_DIM_THRESHOLD = 1000; import * as tf from '../index'; import { ALL_ENVS, describeWithFlags } from '../jasmine_util'; import { expectArraysClose, expectArraysEqual } from '../test_util'; describeWithFlags('matmul', ALL_ENVS, () => { it('A x B', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); const c = tf.matMul(a, b); expect(c.shape).toEqual([2, 2]); expectArraysClose(await c.data(), [0, 8, -3, 20]); }); it('[8,4]x[4,8]', async () => { const a = tf.tensor2d([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 1, 2, 3, 4, 5, 6, 7, 8 ], [8, 4]); const b = tf.tensor2d([ 0, 1, -3, 2, 1, -1, 0, 5, 6, 7, 8, 0, -2, -2, 1, 9, 11, 10, 0, 1, -3, 2, 1, -1, 1, 2, 3, 4, 5, 6, 7, 8 ], [4, 8]); const c = tf.matMul(a, b); const cData = await c.data(); expect(c.shape).toEqual([8, 8]); expectArraysClose(cData, [ 49, 53, 25, 21, 8, 25, 33, 52, 121, 133, 57, 49, 12, 45, 69, 136, 193, 213, 89, 77, 16, 65, 105, 220, 265, 293, 121, 105, 20, 85, 141, 304, 337, 373, 153, 133, 24, 105, 177, 388, 409, 453, 185, 161, 28, 125, 213, 472, 49, 53, 25, 21, 8, 25, 33, 52, 121, 133, 57, 49, 12, 45, 69, 136 ]); }); it('broadcast with unequal batch dims', async () => { const a = tf.tensor3d([ 2, 1, 3, 2, 1, 1, 1, 5, 6, 7, 8, 1, 2, 2, 1, 9, 11, 10, 1, 1, 3, 2, 1, 1 ], [4, 3, 2]); const b = tf.tensor3d([1, 0.5], [1, 2, 1]); const c = tf.matMul(a, b); expect(c.shape).toEqual([4, 3, 1]); expectArraysClose(await c.data(), [2.5, 4, 1.5, 3.5, 9.5, 8.5, 3, 5.5, 16, 1.5, 4, 1.5]); }); it('broadcast with unequal ranks', async () => { const a = tf.tensor5d([ 2, 1, 3, 2, 1, 1, 1, 5, 6, 7, 8, 1, 2, 2, 1, 9, 11, 10, 1, 1, 3, 2, 1, 1 ], [1, 2, 2, 3, 2]); const b = tf.tensor2d([1, 0.5], [2, 1]); const c = tf.matMul(a, b); expect(c.shape).toEqual([1, 2, 2, 3, 1]); expectArraysClose(await c.data(), [2.5, 4, 1.5, 3.5, 9.5, 8.5, 3, 5.5, 16, 1.5, 4, 1.5]); }); it('matmul followed by mul', async () => { const a = tf.tensor2d([1, 2, 3, 4], [2, 2]); const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const c = tf.matMul(a, b); const f = tf.tensor2d([0, 1, 0.5, 0, 0.25, 2], [2, 3]); const d = tf.mul(c, f); const dData = await d.data(); expect(d.shape).toEqual([2, 3]); expectArraysClose(dData, [0, 12, 7.5, 0, 6.5, 66]); }); it('upcasts when dtypes dont match', async () => { const a = [1, 2, 3, 4, 5, 6]; const b = [0, 1, -3, 2, 2, 1]; let c = tf.matMul(tf.tensor(a, [2, 3], 'float32'), tf.tensor(b, [3, 2], 'int32')); expect(c.shape).toEqual([2, 2]); expect(c.dtype).toBe('float32'); expectArraysClose(await c.data(), [0, 8, -3, 20]); c = tf.matMul(tf.tensor(a, [2, 3], 'int32'), tf.tensor(b, [3, 2], 'bool')); expect(c.shape).toEqual([2, 2]); expect(c.dtype).toBe('int32'); expectArraysClose(await c.data(), [5, 6, 11, 15]); }); it('A x B^t', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const b = tf.tensor2d([1, 0, 2, 4, 3, 0], [2, 3]); const transposeA = false; const transposeB = true; const c = tf.matMul(a, b, transposeA, transposeB); const expected = [7, 10, 16, 31]; expectArraysClose(await c.data(), expected); }); it('A^t x B', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const b = tf.tensor2d([1, 0, 2, 4, 3, 0], [2, 3]); const transposeA = true; const transposeB = false; const c = tf.matMul(a, b, transposeA, transposeB); const expected = [17, 12, 2, 22, 15, 4, 27, 18, 6]; expectArraysClose(await c.data(), expected); }); it('A^t x B^t', async () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); const b = tf.tensor2d([1, 0, 2, 4, 3, 0], [2, 3]); const transposeA = true; const transposeB = true; const c = tf.matMul(a, b, transposeA, transposeB); const expected = [11, 13, 14, 20]; expectArraysClose(await c.data(), expected); }); it('A x B^t shapes do not match', () => { const a = tf.zeros([2, 3]); const b = tf.zeros([3, 2]); const f = () => { const transposeA = false; const transposeB = true; tf.matMul(a, b, transposeA, transposeB); }; expect(f).toThrowError(); }); it('A^t x B shapes do not match', () => { const a = tf.zeros([2, 3]); const b = tf.zeros([3, 2]); const f = () => { const transposeA = true; const transposeB = false; tf.matMul(a, b, transposeA, transposeB); }; expect(f).toThrowError(); }); it('A^t x B^t shapes do not match', () => { const a = tf.zeros([3, 2]); const b = tf.zeros([3, 2]); const f = () => { const transposeA = true; const transposeB = true; tf.matMul(a, b, transposeA, transposeB); }; expect(f).toThrowError(); }); it('matmul throws when inner dimensions dont match', () => { const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const b = tf.tensor2d([0, 1, -3, 2, 2, 1, 2, 2], [4, 2]); expect(() => tf.matMul(a, b)).toThrowError(); }); it('matmul throws when passed non matrices', () => { // tslint:disable-next-line:no-any const a = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2, 3, 2]); const b = tf.tensor2d([0, 1, -3, 2, 2, 1, 2, 2], [4, 2]); expect(() => tf.matMul(a, b)).toThrowError(); expect(() => tf.matMul(b, a)).toThrowError(); }); it('matmul throws when passed a vector', () => { // tslint:disable-next-line:no-any const v = tf.tensor1d([2, 3]); const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]); expect(() => tf.matMul(matrix, v)).toThrowError(); }); it('Vector times matrix', async () => { const v = tf.tensor1d([2, 3]); const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]); const result = tf.dot(v, matrix); const expected = [11, 16]; expectArraysClose(await result.data(), expected); }); it('Vector times matrix with implicit reshape', async () => { const v = tf.tensor1d([2, 3]); const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]); const result = tf.dot(v, matrix); const expected = [11, 16]; expectArraysClose(await result.data(), expected); }); it('Matrix times vector', async () => { const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]); const v = tf.tensor1d([2, 3]); const result = tf.dot(matrix, v); const expected = [8, 18]; expectArraysClose(await result.data(), expected); }); it('batched matmul with the matrices being vectors', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.tensor(values, [batch, 1, sharedDim]); const b = tf.tensor(values, [batch, sharedDim, 1]); const result = tf.matMul(a, b); expect(result.shape).toEqual([batch, 1, 1]); expectArraysClose(await result.data(), [4, 0, 0]); }); it('batched matmul called twice so memory of output is reused', async () => { const batch = 3; const n = 2; const vals = new Float32Array(batch * n * n); vals[0] = 2; vals[4] = 3; vals[8] = 4; const a = tf.tensor(vals, [batch, n, n]); const b = tf.tensor(vals, [batch, n, n]); const result = tf.matMul(a, b); expect(result.shape).toEqual([batch, n, n]); expectArraysClose(await result.data(), [4, 0, 0, 0, 9, 0, 0, 0, 16, 0, 0, 0]); // Dispose the first output, so memory of the second output (which has the // same shape), could be reused. result.dispose(); const vals2 = new Float32Array(batch * n * n); vals2[3] = 2; vals2[7] = 3; vals2[11] = 4; const a2 = tf.tensor(vals2, [batch, n, n]); const b2 = tf.tensor(vals2, [batch, n, n]); const result2 = tf.matMul(a2, b2); expect(result2.shape).toEqual([batch, n, n]); expectArraysClose(await result2.data(), [0, 0, 0, 4, 0, 0, 0, 9, 0, 0, 0, 16]); }); it('batched matmul with the matrices being vectors transposedA', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.tensor(values, [batch, sharedDim, 1]); const b = tf.tensor(values, [batch, sharedDim, 1]); const transposeA = true; const transposeB = false; const result = tf.matMul(a, b, transposeA, transposeB); expect(result.shape).toEqual([batch, 1, 1]); expectArraysClose(await result.data(), [4, 0, 0]); }); it('batched matmul with the matrices being vectors transposedB', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.tensor(values, [batch, 1, sharedDim]); const b = tf.tensor(values, [batch, 1, sharedDim]); const transposeA = false; const transposeB = true; const result = tf.matMul(a, b, transposeA, transposeB); expect(result.shape).toEqual([batch, 1, 1]); expectArraysClose(await result.data(), [4, 0, 0]); }); it('batched matmul with matrix x vector', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.ones([batch, 2, sharedDim]); const b = tf.tensor(values, [batch, sharedDim, 1]); const result = tf.matMul(a, b); expect(result.shape).toEqual([batch, 2, 1]); expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]); }); it('batched matmul with matrix x vector transposedA', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.ones([batch, sharedDim, 2]); const b = tf.tensor(values, [batch, sharedDim, 1]); const transposeA = true; const transposeB = false; const result = tf.matMul(a, b, transposeA, transposeB); expect(result.shape).toEqual([batch, 2, 1]); expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]); }); it('batched matmul with matrix x vector transposedB', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.ones([batch, 2, sharedDim]); const b = tf.tensor(values, [batch, 1, sharedDim]); const transposeA = false; const transposeB = true; const result = tf.matMul(a, b, transposeA, transposeB); expect(result.shape).toEqual([batch, 2, 1]); expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]); }); it('batched matmul with vector x matrix', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.tensor(values, [batch, 1, sharedDim]); const b = tf.ones([batch, sharedDim, 2]); const result = tf.matMul(a, b); expect(result.shape).toEqual([batch, 1, 2]); expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]); }); it('batched matmul with vector x matrix transposedA', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.tensor(values, [batch, sharedDim, 1]); const b = tf.ones([batch, sharedDim, 2]); const transposeA = true; const transposeB = false; const result = tf.matMul(a, b, transposeA, transposeB); expect(result.shape).toEqual([batch, 1, 2]); expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]); }); it('batched matmul with vector x matrix transposedB', async () => { const batch = 3; const sharedDim = MATMUL_SHARED_DIM_THRESHOLD + 1; const values = new Float32Array(batch * sharedDim); values[10] = 2; const a = tf.tensor(values, [batch, 1, sharedDim]); const b = tf.ones([batch, 2, sharedDim]); const transposeA = false; const transposeB = true; const result = tf.matMul(a, b, transposeA, transposeB); expect(result.shape).toEqual([batch, 1, 2]); expectArraysClose(await result.data(), [2, 2, 0, 0, 0, 0]); }); it('Matrix * vector propagates NaNs', async () => { const matrix = tf.tensor2d([1, 2, 3, 4], [2, 2]); const v = tf.tensor1d([2, NaN]); const result = tf.dot(matrix, v); const expected = [NaN, NaN]; expectArraysClose(await result.data(), expected); }); it('matrix times vector throws when not passed a matrix', () => { const v = tf.tensor1d([2, 3]); // tslint:disable-next-line:no-any const matrix = tf.tensor3d([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2]); expect(() => tf.dot(matrix, v)).toThrowError(); }); it('Dot product', async () => { const v1 = tf.tensor1d([2, 3]); const v2 = tf.tensor1d([2, 1]); const result = tf.dot(v1, v2); expectArraysClose(await result.data(), [7]); }); it('Dot product propagates NaNs', async () => { const v1 = tf.tensor1d([2, NaN]); const v2 = tf.tensor1d([2, 1]); const result = tf.dot(v1, v2); expectArraysEqual(await result.data(), [NaN]); }); it('Dot product throws when vectors are different size', () => { const v1 = tf.tensor1d([2, 3, 3]); const v2 = tf.tensor1d([2, 1]); expect(() => tf.dot(v1, v2)).toThrowError(); expect(() => tf.dot(v2, v1)).toThrowError(); }); it('Outer product', async () => { const v1 = tf.tensor1d([2, 3]); const v2 = tf.tensor1d([2, 1]); const result = tf.outerProduct(v1, v2); const expected = [4, 2, 6, 3]; expect(result.shape).toEqual([2, 2]); expectArraysClose(await result.data(), expected); }); it('outer product accepts a tensor-like object', async () => { const v1 = [2, 3]; const v2 = [2, 1]; const result = tf.outerProduct(v1, v2); const expected = [4, 2, 6, 3]; expect(result.shape).toEqual([2, 2]); expectArraysClose(await result.data(), expected); }); it('gradients: A * B', async () => { const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [2, 3]); const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]); const dyT = tf.tensor2d([1, 10, 20, 30], [2, 2]); const transposeA = false; const transposeB = false; const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB)); const [da, db] = grads([aT, bT], dyT); // da = dy * bT expect(da.shape).toEqual(aT.shape); const a = await aT.buffer(); const dy = await dyT.buffer(); const b = await bT.buffer(); expectArraysClose(await da.data(), [ dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(0, 1), dy.get(0, 0) * b.get(1, 0) + dy.get(0, 1) * b.get(1, 1), dy.get(0, 0) * b.get(2, 0) + dy.get(0, 1) * b.get(2, 1), dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(0, 1), dy.get(1, 0) * b.get(1, 0) + dy.get(1, 1) * b.get(1, 1), dy.get(1, 0) * b.get(2, 0) + dy.get(1, 1) * b.get(2, 1) ], 1e-1); // db = aT * dy expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ a.get(0, 0) * dy.get(0, 0) + a.get(1, 0) * dy.get(1, 0), a.get(0, 0) * dy.get(0, 1) + a.get(1, 0) * dy.get(1, 1), a.get(0, 1) * dy.get(0, 0) + a.get(1, 1) * dy.get(1, 0), a.get(0, 1) * dy.get(0, 1) + a.get(1, 1) * dy.get(1, 1), a.get(0, 2) * dy.get(0, 0) + a.get(1, 2) * dy.get(1, 0), a.get(0, 2) * dy.get(0, 1) + a.get(1, 2) * dy.get(1, 1) ]); }); it('gradient with clones', () => { const a = tf.tensor2d([1, 2, 3, 10, 20, 30], [2, 3]); const b = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]); const grads = tf.grads((a, b) => tf.matMul(a.clone(), b.clone()).clone()); const [da, db] = grads([a, b]); expect(da.shape).toEqual(a.shape); expect(db.shape).toEqual(b.shape); }); it('gradients: a * bT', async () => { const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [3, 2]); const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]); const dyT = tf.tensor2d([1, 10, 20, 30, 40, 50, 60, 70, 80], [3, 3]); const transposeA = false; const transposeB = true; const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB)); const [da, db] = grads([aT, bT], dyT); // da = dy * b expect(da.shape).toEqual(aT.shape); const a = await aT.buffer(); const dy = await dyT.buffer(); const b = await bT.buffer(); expectArraysClose(await da.data(), [ dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(1, 0) + dy.get(0, 2) * b.get(2, 0), dy.get(0, 0) * b.get(0, 1) + dy.get(0, 1) * b.get(1, 1) + dy.get(0, 2) * b.get(2, 1), dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(1, 0) + dy.get(1, 2) * b.get(2, 0), dy.get(1, 0) * b.get(0, 1) + dy.get(1, 1) * b.get(1, 1) + dy.get(1, 2) * b.get(2, 1), dy.get(2, 0) * b.get(0, 0) + dy.get(2, 1) * b.get(1, 0) + dy.get(2, 2) * b.get(2, 0), dy.get(2, 0) * b.get(0, 1) + dy.get(2, 1) * b.get(1, 1) + dy.get(2, 2) * b.get(2, 1) ]); // db = dyT * a expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ dy.get(0, 0) * a.get(0, 0) + dy.get(1, 0) * a.get(1, 0) + dy.get(2, 0) * a.get(2, 0), dy.get(0, 0) * a.get(0, 1) + dy.get(1, 0) * a.get(1, 1) + dy.get(2, 0) * a.get(2, 1), dy.get(0, 1) * a.get(0, 0) + dy.get(1, 1) * a.get(1, 0) + dy.get(2, 1) * a.get(2, 0), dy.get(0, 1) * a.get(0, 1) + dy.get(1, 1) * a.get(1, 1) + dy.get(2, 1) * a.get(2, 1), dy.get(0, 2) * a.get(0, 0) + dy.get(1, 2) * a.get(1, 0) + dy.get(2, 2) * a.get(2, 0), dy.get(0, 2) * a.get(0, 1) + dy.get(1, 2) * a.get(1, 1) + dy.get(2, 2) * a.get(2, 1) ]); }); it('gradients: aT * b', async () => { const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [3, 2]); const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [3, 2]); const dyT = tf.tensor2d([1, 10, 20, 30], [2, 2]); const transposeA = true; const transposeB = false; const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB)); const [da, db] = grads([aT, bT], dyT); // da = b * dyT expect(da.shape).toEqual(aT.shape); const a = await aT.buffer(); const dy = await dyT.buffer(); const b = await bT.buffer(); expectArraysClose(await da.data(), [ dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(0, 1), dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(0, 1), dy.get(0, 0) * b.get(1, 0) + dy.get(0, 1) * b.get(1, 1), dy.get(1, 0) * b.get(1, 0) + dy.get(1, 1) * b.get(1, 1), dy.get(0, 0) * b.get(2, 0) + dy.get(0, 1) * b.get(2, 1), dy.get(1, 0) * b.get(2, 0) + dy.get(1, 1) * b.get(2, 1) ]); // db = a * dy expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ dy.get(0, 0) * a.get(0, 0) + dy.get(1, 0) * a.get(0, 1), dy.get(0, 1) * a.get(0, 0) + dy.get(1, 1) * a.get(0, 1), dy.get(0, 0) * a.get(1, 0) + dy.get(1, 0) * a.get(1, 1), dy.get(0, 1) * a.get(1, 0) + dy.get(1, 1) * a.get(1, 1), dy.get(0, 0) * a.get(2, 0) + dy.get(1, 0) * a.get(2, 1), dy.get(0, 1) * a.get(2, 0) + dy.get(1, 1) * a.get(2, 1) ]); }); it('gradients: aT * bT', async () => { const aT = tf.tensor2d([1, 2, 3, 10, 20, 30], [3, 2]); const bT = tf.tensor2d([2, 3, 4, 1, 2, 3], [2, 3]); const dyT = tf.tensor2d([1, 10, 20, 30], [2, 2]); const transposeA = true; const transposeB = true; const grads = tf.grads((a, b) => tf.matMul(a, b, transposeA, transposeB)); const [da, db] = grads([aT, bT], dyT); // da = bT * dyT expect(da.shape).toEqual(aT.shape); const a = await aT.buffer(); const dy = await dyT.buffer(); const b = await bT.buffer(); expectArraysClose(await da.data(), [ dy.get(0, 0) * b.get(0, 0) + dy.get(0, 1) * b.get(1, 0), dy.get(1, 0) * b.get(0, 0) + dy.get(1, 1) * b.get(1, 0), dy.get(0, 0) * b.get(0, 1) + dy.get(0, 1) * b.get(1, 1), dy.get(1, 0) * b.get(0, 1) + dy.get(1, 1) * b.get(1, 1), dy.get(0, 0) * b.get(0, 2) + dy.get(0, 1) * b.get(1, 2), dy.get(1, 0) * b.get(0, 2) + dy.get(1, 1) * b.get(1, 2) ]); // db = dyT * aT expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ dy.get(0, 0) * a.get(0, 0) + dy.get(1, 0) * a.get(0, 1), dy.get(0, 0) * a.get(1, 0) + dy.get(1, 0) * a.get(1, 1), dy.get(0, 0) * a.get(2, 0) + dy.get(1, 0) * a.get(2, 1), dy.get(0, 1) * a.get(0, 0) + dy.get(1, 1) * a.get(0, 1), dy.get(0, 1) * a.get(1, 0) + dy.get(1, 1) * a.get(1, 1), dy.get(0, 1) * a.get(2, 0) + dy.get(1, 1) * a.get(2, 1) ]); }); it('throws when passed a as a non-tensor', () => { expect(() => tf.matMul({}, tf.tensor2d([2], [1, 1]))) .toThrowError(/Argument 'a' passed to 'matMul' must be a Tensor/); }); it('throws when passed b as a non-tensor', () => { expect(() => tf.matMul(tf.tensor2d([2], [1, 1]), {})) .toThrowError(/Argument 'b' passed to 'matMul' must be a Tensor/); }); it('accepts a tensor-like object', async () => { const a = [[1, 2, 3], [4, 5, 6]]; // 2x3 const b = [[0, 1], [-3, 2], [2, 1]]; // 3x2 const c = tf.matMul(a, b); expect(c.shape).toEqual([2, 2]); expectArraysClose(await c.data(), [0, 8, -3, 20]); }); it('accepts a tensor-like object chained', async () => { const a = tf.tensor2d([[1, 2, 3], [4, 5, 6]], [2, 3]); // 2x3 const b = [[0, 1], [-3, 2], [2, 1]]; // 3x2 const c = a.matMul(b); expect(c.shape).toEqual([2, 2]); expectArraysClose(await c.data(), [0, 8, -3, 20]); }); it('a * b where a has zero in its shape', async () => { const a = tf.tensor2d([], [0, 3]); const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); const c = tf.matMul(a, b); expect(c.shape).toEqual([0, 2]); expect(c.rank).toBe(2); expect(c.size).toBe(0); expectArraysClose(await c.data(), []); }); it('(a * b) * c where a has zero in its shape, so a*b does also', async () => { const a = tf.tensor2d([], [0, 3]); const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); const ab = tf.matMul(a, b); expect(ab.shape).toEqual([0, 2]); expectArraysClose(await ab.data(), []); const c = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const res = tf.matMul(ab, c); expect(res.shape).toEqual([0, 3]); expectArraysClose(await res.data(), []); }); it('throws error for string tensor', () => { expect(() => tf.matMul([['a']], [['b']])) .toThrowError(/Argument 'a' passed to 'matMul' must be numeric tensor/); }); }); describeWithFlags('matmulBatch', ALL_ENVS, () => { it('A x B', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 2, 3]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 3, 2]); const c = tf.matMul(a, b); expect(c.shape).toEqual([5, 2, 2]); expectArraysClose(await c.data(), [ 87, 20, -6, -32, -24, -50, -36, -5, 24, 98, 70, 33, -64, 47, -42, -28, -71, 24, 37, 5 ]); }); it('A x B in 4D', async () => { const a = tf.tensor4d([ -2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8, -7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1, 9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3, -2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3, -7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4, 6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8, 10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2, 3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1 ], [4, 5, 2, 3]); const b = tf.tensor4d([ -4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1, -4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5, 9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6, -3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6, 6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8, -3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4, -4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4, 1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6 ], [4, 5, 3, 2]); const transposeA = false; const transposeB = false; const c = tf.matMul(a, b, transposeA, transposeB); expectArraysClose(await c.data(), [ 32, -17, 68, -12, -15, 14, 5, -46, 96, 32, 46, -17, 78, -85, -28, 46, 94, -35, 0, -13, 31, -52, 17, -87, 96, 47, 32, -2, -6, 105, 40, -2, 63, 76, 17, 30, 56, -66, -21, 23, -144, 41, 22, 8, 118, -106, -88, -6, -17, 2, 2, -26, 8, -63, -38, -108, -84, -30, -35, 49, 16, -12, -14, -12, 48, 132, 4, 102, 32, 66, -4, 33, -13, 1, -40, -25, -3, 61, -18, -20 ]); }); it('A x B^t', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 2, 3]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 2, 3]); const transposeA = false; const transposeB = true; const c = tf.matMul(a, b, transposeA, transposeB); expect(c.shape).toEqual([5, 2, 2]); expectArraysClose(await c.data(), [ 66, 35, -48, 14, -45, -33, -12, 7, -76, 64, 3, 66, -119, -9, -64, -60, -76, 48, 33, -16 ]); }); it('A^t x B', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 2, 3]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 2, 3]); const transposeA = true; const transposeB = false; const c = tf.matMul(a, b, transposeA, transposeB); expectArraysClose(await c.data(), [ 40, -36, 5, 40, 34, 5, 48, 80, 6, -6, 21, -48, -23, -20, -50, -12, -21, -12, -58, 15, -96, 23, 6, 39, 20, 109, 42, -67, 45, -40, 76, -52, 40, -15, 1, -60, -58, -3, 36, 40, -6, -24, 51, -33, -28 ]); }); it('A^t x B in 4D', async () => { const a = tf.tensor4d([ -2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8, -7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1, 9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3, -2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3, -7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4, 6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8, 10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2, 3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1 ], [4, 5, 2, 3]); const b = tf.tensor4d([ -4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1, -4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5, 9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6, -3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6, 6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8, -3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4, -4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4, 1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6 ], [4, 5, 2, 3]); const transposeA = true; const transposeB = false; const c = tf.matMul(a, b, transposeA, transposeB); expectArraysClose(await c.data(), [ 38, -24, 9, -30, 9, -9, -74, 39, -19, 8, 11, -30, 56, -67, 46, -40, 71, -74, 82, 42, 55, -50, 6, 1, 60, -18, -13, -15, -52, -61, 81, -52, 59, -15, 76, 43, 34, -56, 38, 0, 26, -14, -15, 1, -4, 153, -34, 61, -135, 30, -48, 135, -30, 60, 38, 36, 58, 40, 45, 71, 1, 2, 3, 24, 90, -56, -10, 40, -18, 6, -30, 14, 34, 65, 27, 24, -29, -44, -46, -3, 35, -21, 27, 48, 20, 52, 32, 35, -11, -46, -12, 22, 13, 30, 2, -23, -54, -48, 34, 16, -42, -39, -26, 82, 89, 76, -84, 30, 9, 27, 30, -21, -43, -48, 60, 20, 24, -78, -91, -63, -12, 24, 21, 28, 48, 35, -6, 27, 33, 53, -81, -71, 61, -27, 11, -48, -82, 8, -12, -19, -10, -48, -81, 0, 13, 32, 41, 0, -100, -120, 16, 124, 152, 45, 60, -28, 24, 21, -12, -14, -16, 8, 9, -33, 5, -12, -48, 4, 8, 9, 0, -31, 16, -98, -9, 4, -22, 38, 2, -96 ]); }); it('A^t x B^t', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 3, 2]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 2, 3]); const transposeA = true; const transposeB = true; const c = tf.matMul(a, b, transposeA, transposeB); expectArraysClose(await c.data(), [ 66, 42, 16, -56, -12, 6, -30, 19, -1, 102, -94, 14, -56, 32, 100, -56, -47, -11, 5, -31 ]); }); it('A has more batch dimensions than B', async () => { const a = tf.tensor4d([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [2, 2, 2, 2]); const b = tf.tensor3d([1, 2, 3, 4], [2, 2, 1]); const c = tf.matMul(a, b); expectArraysClose(await c.data(), [5, 11, 39, 53, 29, 35, 95, 109]); }); it('batch dimensions do not match', () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6 ], [4, 3, 2]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 2, 3]); const f = () => { tf.matMul(a, b, false, false); }; expect(f).toThrowError(); }); it('gradients: A x B', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 2, 3]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 3, 2]); const dy = tf.tensor3d([8, 2, -3, -2, -8, 4, 5, 7, 4, -4, -4, 5, 8, 10, 1, 0, 6, 6, -4, 7], [5, 2, 2]); const grads = tf.grads((a, b) => tf.matMul(a, b, false, false)); const [da, db] = grads([a, b], dy); // da = dy * bT expect(da.shape).toEqual(a.shape); expectArraysClose(await da.data(), [ -72, -8, -56, 32, 3, 21, -12, -40, 40, 36, 44, 51, -52, -44, -4, 61, 49, 13, -2, -10, -108, -9, 0, -1, -24, 60, -6, 49, 26, -40 ]); // db = aT * dy expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ -64, -26, -34, -6, -24, 4, -77, -47, 51, -35, 63, -3, 52, -58, -20, 23, -12, 20, 60, 70, -68, -80, 14, 10, 44, -11, -32, -10, -46, -68 ]); }); it('4d gradients: A x B', async () => { const a = tf.tensor4d([ -2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8, -7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1, 9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3, -2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3, -7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4, 6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8, 10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2, 3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1 ], [4, 5, 2, 3]); const b = tf.tensor4d([ -4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1, -4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5, 9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6, -3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6, 6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8, -3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4, -4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4, 1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6 ], [4, 5, 3, 2]); const dy = tf.tensor4d([ 8, -7, 0, -9, -5, -5, 0, 3, 7, -4, 6, -8, -8, 0, -1, -8, -9, -7, -4, -9, 2, 3, 5, 8, -5, -7, 3, -10, -5, -9, -5, 1, 7, 1, -9, -10, 8, 5, 0, 8, -6, 4, 0, -5, 8, -7, -2, 1, -8, 9, 9, -7, 1, 7, -2, 5, -2, 9, 1, -5, 7, 5, -7, -6, 6, 7, -8, 7, 4, -5, 4, -5, 3, -4, -5, 4, -6, 3, -8, 10 ], [4, 5, 2, 2]); const grads = tf.grads((a, b) => tf.matMul(a, b, false, false)); const [da, db] = grads([a, b], dy); // da = dy * bT expect(da.shape).toEqual(a.shape); expectArraysClose(await da.data(), [ -11, 26, 55, 27, 54, 9, 25, -15, 5, -3, -12, -27, -63, 9, -14, -54, 26, 20, 24, 56, 64, 35, -41, 0, 11, 30, -37, -1, 31, 13, 12, 37, 2, 29, 97, 6, 60, 47, 31, 35, -14, 24, 100, -3, -9, 0, -33, 1, 49, 9, -33, -124, -29, 86, -9, -11, -6, -40, 72, -48, -20, 48, -72, -20, -30, 15, -72, 136, 87, 12, -28, -21, 9, 37, 1, -32, -51, 2, -65, -49, -1, -41, -16, 2, -95, -31, -36, 52, 18, 20, -63, 34, 72, 70, -38, -78, -66, -27, -111, -10, 85, 1, -21, -21, -4, -21, -21, -4, -12, 20, 13, -4, -20, -19, -30, 81, 30, -40, 150, 76 ]); // db = aT * dy expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ -16, 59, 24, -48, 40, -116, 15, 18, 25, -2, -5, 22, -84, 80, 36, -16, -38, 8, -74, -16, 46, -80, 62, 48, 96, 110, 38, 6, -77, -54, 58, 91, -57, -90, 45, 70, 46, 36, 20, 99, -3, 10, 55, 79, -10, 42, 5, -31, 85, 47, -74, -89, 37, 75, -48, -38, -64, -8, 32, 44, 42, -53, -48, 47, 42, -18, -30, 27, 70, -62, 36, -24, 78, -69, -112, 101, -40, 20, -11, 113, -9, -6, 1, -50, 3, -12, -16, 71, -14, 67, 84, 62, 21, 17, 84, 63, -16, -35, -28, 98, 4, -126, 40, -50, 36, -45, -16, 20, 19, -12, 8, 0, 3, -4, 34, -65, 10, -17, -46, 17 ]); }); it('gradients: A x B^t', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 3, 2]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 3, 2]); const dy = tf.tensor3d([ -0, 7, 5, 0, -9, 5, -7, 6, -5, -3, -2, -2, -4, 10, -3, 5, -1, 3, -2, -9, 4, -5, 7, 9, -10, -8, -8, -5, -0, -1, 3, 3, 4, 9, -7, 6, -2, -9, 5, 1, -5, -3, -1, 9, 4 ], [5, 3, 3]); const grads = tf.grads((a, b) => tf.matMul(a, b, false, true)); const [da, db] = grads([a, b], dy); expect(da.shape).toEqual(a.shape); expectArraysClose(await da.data(), [ -42, 0, -26, 0, 85, 28, -19, -29, 51, -16, 6, 37, 94, -27, 50, 71, 24, -202, 46, -25, -31, -22, -87, 10, -7, -80, -36, -15, 55, 35 ]); expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ 14, 56, 7, -155, -45, 55, 7, 72, -67, -79, 7, 50, -69, -46, -52, -88, 49, -126, -68, 106, 31, -30, -27, 60, -19, 5, 27, 43, 55, -13 ]); }); it('4d gradients: A x B^t', async () => { const a = tf.tensor4d([ -2, 3, 5, -5, 3, 9, -3, -5, 1, 1, -9, 9, -6, 6, -8, -7, -1, 3, 9, -7, -7, 2, 10, -6, -8, -6, 9, -6, 4, -1, 9, -6, 10, 8, -9, 5, -8, -7, 0, 2, -5, -1, -9, -4, 3, -2, 6, -4, 7, 1, -5, -4, 9, -8, -6, -8, 4, -1, 4, 3, -7, 8, -7, 5, -3, -2, -4, 9, 2, -1, 1, -10, -3, 5, -4, 6, -8, -8, 9, -3, -5, 10, 3, -3, -3, 9, 3, -3, 2, -8, 10, 1, 9, -2, -2, -3, -4, 6, -10, -1, 8, -8, 7, 3, -2, 3, 6, -2, -2, -4, 1, -5, -4, 0, 5, 1, 9, -8, -2, -1 ], [4, 5, 3, 2]); const b = tf.tensor4d([ -4, -3, -2, -6, 6, -1, -4, -1, 7, -4, 8, -9, -9, 0, -1, -4, -6, -7, -3, -4, -7, 6, -8, 1, -2, 1, -1, -3, 8, -5, 9, -2, 5, 9, -2, 2, -5, -5, -8, -1, -2, -3, -2, -10, 6, -3, 0, 1, 6, 7, 1, 2, -4, -5, 2, -5, -7, 9, 3, -6, 6, 4, -4, 6, 10, -3, -2, 8, 10, -8, 10, -1, -9, -7, -8, -3, 1, 1, -2, -9, -7, -6, -1, 0, 7, -9, -7, -5, 0, -4, -4, -7, 2, 4, 6, 6, -4, -6, -8, 3, -8, -9, 6, 9, -4, 1, -1, 0, 8, 9, 0, -5, 3, -1, 5, 0, -10, 7, -2, 6 ], [4, 5, 3, 2]); const dy = tf.tensor4d([ 5, -1, -5, -4, -1, 9, 1, -2, 10, 7, -1, 6, -8, 8, -3, 9, -4, 2, -4, -8, 8, 4, 8, -10, -8, -8, 6, 6, -5, 9, -1, -7, -5, -3, -3, 2, -6, 5, 8, -9, 5, -8, -3, 8, 6, 2, 8, 5, 9, 7, 6, 2, -3, 10, 7, 7, -3, 4, -3, -6, -8, -8, 9, 0, -8, -3, -2, -2, 8, 2, 3, -6, 3, 6, -3, 7, 7, -9, -3, 8, 7, 7, -1, -6, 5, 2, -1, -1, 1, 5, 0, -4, 3, -4, -10, 1, -2, -8, -9, -6, 4, 4, -7, -1, -1, -9, 7, 1, -1, 8, 0, -2, -7, 5, 7, 8, 9, -3, -8, -6, -7, -8, -1, 8, -4, 7, 5, -9, 9, 3, 0, -10, 7, -9, 4, -7, 5, -2, -2, 3, 3, -6, 2, 0, 8, -5, -10, 3, -7, 0, -6, 2, 3, -1, 3, 3, -10, 1, 3, -7, -1, 8, -2, -1, -1, -3, -9, 7, 4, -6, 3, 0, -7, -4, -5, -8, -6, 10, -6, 4 ], [4, 5, 3, 3]); const grads = tf.grads((a, b) => tf.matMul(a, b, false, true)); const [da, db] = grads([a, b], dy); expect(da.shape).toEqual(a.shape); expectArraysClose(await da.data(), [ -48, -4, 72, 9, 60, -1, 13, -57, 64, 3, -48, -11, -4, -24, 16, 38, 44, -10, -55, -45, 92, -43, 14, -4, 71, -61, -51, 16, 46, -57, 48, 78, 104, 57, -17, -11, -85, -33, 16, 1, 86, 21, -48, 21, -8, 34, 14, -35, 36, 48, 85, 108, -38, -40, 3, -8, -7, -1, 6, -16, 46, -33, 26, -79, -70, -29, 92, -84, -6, -47, 98, -129, -55, -17, 79, 40, -118, -64, 68, 75, 71, 111, 5, -48, 98, -36, 21, 13, 112, -34, 26, 57, 32, 44, 28, 50, 88, 27, 44, -39, -16, 15, -21, -6, -67, -89, -46, -64, -19, -12, -3, 11, 41, 63, 78, -73, 67, -92, 102, -18 ]); expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ -27, 44, -9, -16, 85, 30, -110, 38, 47, -23, -39, -15, 0, -76, -8, -128, 26, 136, 31, -26, -26, 39, 136, -85, -45, 93, 37, -68, -112, -6, 90, 70, 169, -7, 15, 68, -16, -33, -16, -47, -21, 0, 6, -4, 84, 24, 15, 20, -41, -1, 79, -86, 87, -23, -26, -64, 18, 9, 52, 64, 34, -16, 122, -66, -1, 47, 1, 43, -11, -33, -17, 27, -45, -73, -60, -66, -92, -42, 32, -85, -44, -44, -28, -13, 8, -20, 9, -9, -49, 79, -76, 15, 73, -7, 7, -8, -110, 93, 106, -39, 64, -84, -29, -19, 13, 14, 63, 2, -15, 23, 17, 49, -3, -31, -65, 30, -95, 63, -82, 40 ]); }); it('gradients: A^t x B', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 3, 2]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 3, 2]); const dy = tf.tensor3d([8, 2, -3, -2, -8, 4, 5, 7, 4, -4, -4, 5, 8, 10, 1, 0, 6, 6, -4, 7], [5, 2, 2]); const grads = tf.grads((a, b) => tf.matMul(a, b, true, false)); const [da, db] = grads([a, b], dy); expect(da.shape).toEqual(a.shape); expectArraysClose(await da.data(), [ -72, 32, -8, 3, -56, 21, -12, 36, -40, 44, 40, 51, -52, 61, -44, 49, -4, 13, -2, -9, -10, 0, -108, -1, -24, 49, 60, 26, -6, -40 ]); expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ -25, 0, -72, -28, 8, 12, -67, -33, 3, -87, 23, 17, 36, -38, 44, -50, -20, 28, 48, 70, 12, 10, -26, -40, 40, -4, -34, -89, 20, -2 ]); }); it('gradients: A^t x B^t', async () => { const a = tf.tensor3d([ -5, -5, -6, 8, -2, -8, 4, -7, -6, -9, -1, 3, 7, -2, 5, -6, 3, 8, 7, -8, 1, 4, -4, 6, 4, -4, -9, -5, 2, -2 ], [5, 3, 2]); const b = tf.tensor3d([ -8, -4, -1, 0, -7, 0, 3, 3, 6, 2, -1, 8, -4, 9, -6, 5, 8, 9, -9, 7, 0, -1, -1, -10, -7, 3, 4, 6, 3, -4 ], [5, 2, 3]); const dy = tf.tensor3d([8, 2, -3, -2, -8, 4, 5, 7, 4, -4, -4, 5, 8, 10, 1, 0, 6, 6, -4, 7], [5, 2, 2]); const grads = tf.grads((a, b) => tf.matMul(a, b, true, true)); const [da, db] = grads([a, b], dy); expect(da.shape).toEqual(a.shape); expectArraysClose(await da.data(), [ -64, 24, -46, 26, -8, 3, -16, 29, -28, 8, -16, 86, -36, 41, 4, 4, -60, 69, -82, -9, 46, 7, -100, 0, -6, 70, 36, 9, 0, -44 ]); expect(db.shape).toEqual(b.shape); expectArraysClose(await db.data(), [ -25, -72, 8, 0, -28, 12, -67, 3, 23, -33, -87, 17, 36, 44, -20, -38, -50, 28, 48, 12, -26, 70, 10, -40, 40, -34, 20, -4, -89, -2 ]); }); }); describeWithFlags('dot', ALL_ENVS, () => { let a; let b; let c; let d; let e; let f; beforeEach(() => { a = tf.tensor1d([1, 2]); b = tf.tensor2d([[1, 2], [3, 4]]); c = tf.tensor2d([[1, 2, 3], [4, 5, 6]]); d = tf.tensor3d([1, 2], [1, 1, 2]); e = tf.scalar(1); f = tf.tensor3d([1, 2, 1, 2], [2, 1, 2]); }); it('vector-vector', async () => { const aa = tf.dot(a, a); expectArraysClose(await aa.data(), [5]); expect(aa.shape).toEqual([]); }); it('vector-matrix', async () => { const ab = tf.dot(a, b); const ac = tf.dot(a, c); expect(ab.shape).toEqual([2]); expect(ac.shape).toEqual([3]); expectArraysClose(await ab.data(), [7, 10]); expectArraysClose(await ac.data(), [9, 12, 15]); }); it('matrix-vector', async () => { const ba = b.dot(a); expect(ba.shape).toEqual([2]); expectArraysClose(await ba.data(), [5, 11]); }); it('matrix-matrix', async () => { const bb = tf.dot(b, b); const bc = tf.dot(b, c); expect(bb.shape).toEqual([2, 2]); expect(bc.shape).toEqual([2, 3]); expectArraysClose(await bb.data(), [7, 10, 15, 22]); expectArraysClose(await bc.data(), [9, 12, 15, 19, 26, 33]); }); it('matmul A x B asymmetric', async () => { const a = tf.tensor2d([1, 2, 3, 4], [2, 2]); const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const c = tf.matMul(a, b); const cData = await c.data(); expect(c.shape).toEqual([2, 3]); expectArraysClose(cData, [9, 12, 15, 19, 26, 33]); }); it('broadcast batch shape', async () => { const a = tf.tensor3d([1, 2, 3, 4], [1, 2, 2]); const b = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const c = tf.matMul(a, b); const cData = await c.data(); expect(c.shape).toEqual([1, 2, 3]); expectArraysClose(cData, [9, 12, 15, 19, 26, 33]); }); it('throws error on incompatible dimensions', () => { expect(() => tf.dot(c, f)).toThrowError(); }); it('throws error when inputs are not rank 1 or 2', () => { expect(() => tf.dot(a, d)).toThrowError(); expect(() => tf.dot(a, e)).toThrowError(); }); it('accepts a tensor-like object', async () => { const a = [1, 2, 3]; const res = tf.dot(a, a); expectArraysClose(await res.data(), [14]); expect(res.shape).toEqual([]); }); it('throws error for string tensors', () => { expect(() => tf.dot('a', 'b')) .toThrowError(/Argument 't1' passed to 'dot' must be numeric tensor/); }); it('ensure no memory leak', async () => { const numTensorsBefore = tf.memory().numTensors; const numDataIdBefore = tf.engine().backend.numDataIds(); const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]); const b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]); const c = tf.matMul(a, b); expect(c.shape).toEqual([2, 2]); expectArraysClose(await c.data(), [0, 8, -3, 20]); a.dispose(); b.dispose(); c.dispose(); const numTensorsAfter = tf.memory().numTensors; const numDataIdAfter = tf.engine().backend.numDataIds(); expect(numTensorsAfter).toBe(numTensorsBefore); expect(numDataIdAfter).toBe(numDataIdBefore); }); }); //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWF0X211bF90ZXN0LmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvbWF0X211bF90ZXN0LnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILDhFQUE4RTtBQUM5RSx1RUFBdUU7QUFDdkUsb0VBQW9FO0FBQ3BFLDZCQUE2QjtBQUM3Qix3RUFBd0U7QUFDeEUsa0NBQWtDO0FBQ2xDLE1BQU0sQ0FBQyxNQUFNLDJCQUEyQixHQUFHLElBQUksQ0FBQztBQUVoRCxPQUFPLEtBQUssRUFBRSxNQUFNLFVBQVUsQ0FBQztBQUMvQixPQUFPLEVBQUMsUUFBUSxFQUFFLGlCQUFpQixFQUFDLE1BQU0saUJBQWlCLENBQUM7QUFDNUQsT0FBTyxFQUFDLGlCQUFpQixFQUFFLGlCQUFpQixFQUFDLE1BQU0sY0FBYyxDQUFDO0FBR2xFLGlCQUFpQixDQUFDLFFBQVEsRUFBRSxRQUFRLEVBQUUsR0FBRyxFQUFFO0lBQ3pDLEVBQUUsQ0FBQyxPQUFPLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDckIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQ