UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

30 lines (29 loc) 1.3 kB
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/conv3d_backprop_input" /> import { Tensor4D, Tensor5D } from '../tensor'; /** * Computes the derivative of the input of a 3D convolution. * * @param xShape The shape of the input: [batch, depth, height, width, * in_channels]. If length of 4, batch of 1 is assumed. * @param dy The derivative of the output, of rank 5 or rank 4 of shape * `[batch, outDepth, outHeight, outWidth, in_channels]`. * If rank 4, batch of 1 is assumed. * @param filter The filter, rank 5, of shape * `[filterDepth, filterHeight, filterWidth, inDepth, outDepth]`. * @param strides The strides of the convolution: `[strideDepth, strideHeight, * strideWidth]`. * @param pad The type of padding algorithm used: * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. */ declare function conv3DBackpropInput_<T extends Tensor4D | Tensor5D>(xShape: [ number, number, number, number, number ] | [number, number, number, number], dy: T, filter: Tensor5D, strides: [number, number, number] | number, pad: 'valid' | 'same'): T; export declare const conv3DBackpropInput: typeof conv3DBackpropInput_; export {};