UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

524 lines 95.5 kB
/** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import * as tf from '../index'; import { ALL_ENVS, describeWithFlags } from '../jasmine_util'; import { expectArraysClose } from '../test_util'; describeWithFlags('conv2dTranspose', ALL_ENVS, () => { it('input=2x2x1,d2=1,f=2,s=1,p=0', async () => { const origInputDepth = 1; const origOutputDepth = 1; const inputShape = [1, 1, origOutputDepth]; const fSize = 2; const origPad = 0; const origStride = 1; const x = tf.tensor3d([2], inputShape); const w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); const result = tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad); const expected = [6, 2, 10, 0]; expect(result.shape).toEqual([2, 2, 1]); expectArraysClose(await result.data(), expected); }); it('input=3x3x1,d2=1,f=2,s=2,p=same', async () => { const origInputDepth = 1; const origOutputDepth = 4; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = 'same'; const origStride = 2; const x = tf.tensor4d([ 1.24, 1.66, 0.9, 1.39, 0.16, 0.27, 0.42, 0.61, 0.04, 0.17, 0.34, 0.28, 0., 0.06, 0.14, 0.24 ], inputShape); const w = tf.tensor4d([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.], [fSize, fSize, origInputDepth, origOutputDepth]); const result = tf.conv2dTranspose(x, w, [1, 3, 3, 1], origStride, origPad); const expected = [7.63, 28.39, 2.94, 49.15, 69.91, 14.62, 1.69, 5.01, 1.06]; expect(result.shape).toEqual([1, 3, 3, 1]); expectArraysClose(await result.data(), expected); }); it('input=3x3x1,d2=1,f=2,s=2,p=explicit', async () => { const origInputDepth = 1; const origOutputDepth = 4; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = [[0, 0], [0, 1], [0, 1], [0, 0]]; const origStride = 2; const x = tf.tensor4d([ 1.24, 1.66, 0.9, 1.39, 0.16, 0.27, 0.42, 0.61, 0.04, 0.17, 0.34, 0.28, 0., 0.06, 0.14, 0.24 ], inputShape); const w = tf.tensor4d([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.], [fSize, fSize, origInputDepth, origOutputDepth]); const result = tf.conv2dTranspose(x, w, [1, 3, 3, 1], origStride, origPad); const expected = [7.63, 28.39, 2.94, 49.15, 69.91, 14.62, 1.69, 5.01, 1.06]; expect(result.shape).toEqual([1, 3, 3, 1]); expectArraysClose(await result.data(), expected); }); it('input=2x2x1,d2=1,f=2,s=1,p=0, batch=2', async () => { const origInputDepth = 1; const origOutputDepth = 1; const inputShape = [2, 1, 1, origOutputDepth]; const fSize = 2; const origPad = 0; const origStride = 1; const x = tf.tensor4d([2, 3], inputShape); const w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); const result = tf.conv2dTranspose(x, w, [2, 2, 2, 1], origStride, origPad); const expected = [6, 2, 10, 0, 9, 3, 15, 0]; expect(result.shape).toEqual([2, 2, 2, 1]); expectArraysClose(await result.data(), expected); }); it('input=2x2x2,output=3x3x2,f=2,s=2,inDepth=2,p=same', async () => { const origInputDepth = 2; const origOutputDepth = 2; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = 'same'; const origStride = 2; const x = tf.tensor4d([0., 1., 2., 3., 4., 5., 6., 7.], inputShape); const w = tf.tensor4d([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.], [fSize, fSize, origInputDepth, origOutputDepth]); const result = tf.conv2dTranspose(x, w, [1, 3, 3, origInputDepth], origStride, origPad); const expected = [1, 3, 5, 7, 3, 13, 9, 11, 13, 15, 43, 53, 5, 23, 41, 59, 7, 33.]; expect(result.shape).toEqual([1, 3, 3, origInputDepth]); expectArraysClose(await result.data(), expected); }); it('throws when dimRoundingMode is set and pad is same', async () => { const origInputDepth = 1; const origOutputDepth = 4; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = 'same'; const origStride = 2; const dimRoundingMode = 'round'; const x = tf.tensor4d([ 1.24, 1.66, 0.9, 1.39, 0.16, 0.27, 0.42, 0.61, 0.04, 0.17, 0.34, 0.28, 0., 0.06, 0.14, 0.24 ], inputShape); const w = tf.tensor4d([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.], [fSize, fSize, origInputDepth, origOutputDepth]); expect(() => tf.conv2dTranspose(x, w, [1, 3, 3, 1], origStride, origPad, dimRoundingMode)) .toThrowError(); }); it('throws when dimRoundingMode is set and pad is valid', async () => { const origInputDepth = 1; const origOutputDepth = 4; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = 'valid'; const origStride = 2; const dimRoundingMode = 'round'; const x = tf.tensor4d([ 1.24, 1.66, 0.9, 1.39, 0.16, 0.27, 0.42, 0.61, 0.04, 0.17, 0.34, 0.28, 0., 0.06, 0.14, 0.24 ], inputShape); const w = tf.tensor4d([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.], [fSize, fSize, origInputDepth, origOutputDepth]); expect(() => tf.conv2dTranspose(x, w, [1, 3, 3, 1], origStride, origPad, dimRoundingMode)) .toThrowError(); }); it('throws when dimRoundingMode is set and pad is a non-integer number', async () => { const origInputDepth = 1; const origOutputDepth = 4; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = 1.2; const origStride = 2; const dimRoundingMode = 'round'; const x = tf.tensor4d([ 1.24, 1.66, 0.9, 1.39, 0.16, 0.27, 0.42, 0.61, 0.04, 0.17, 0.34, 0.28, 0., 0.06, 0.14, 0.24 ], inputShape); const w = tf.tensor4d([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. ], [fSize, fSize, origInputDepth, origOutputDepth]); expect(() => tf.conv2dTranspose(x, w, [1, 3, 3, 1], origStride, origPad, dimRoundingMode)) .toThrowError(); }); it('throws when dimRoundingMode is set and pad is explicit by non-integer ' + 'number', async () => { const origInputDepth = 1; const origOutputDepth = 4; const inputShape = [1, 2, 2, origOutputDepth]; const fSize = 2; const origPad = [[0, 0], [0, 1.1], [0, 1], [0, 0]]; const origStride = 2; const dimRoundingMode = 'round'; const x = tf.tensor4d([ 1.24, 1.66, 0.9, 1.39, 0.16, 0.27, 0.42, 0.61, 0.04, 0.17, 0.34, 0.28, 0., 0.06, 0.14, 0.24 ], inputShape); const w = tf.tensor4d([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. ], [fSize, fSize, origInputDepth, origOutputDepth]); expect(() => tf.conv2dTranspose(x, w, [1, 3, 3, 1], origStride, origPad, dimRoundingMode)) .toThrowError(); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([[ // [[-0.14656299], [0.32942239], [-1.90302866]], // [[-0.06487813], [-2.02637842], [-1.83669377]], // [[0.82650784], [-0.89249092], [0.01207666]] // ]]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[-0.48280062], [1.26770487]], [[-0.83083738], [0.54341856]]], // [[[-0.274904], [0.73111374]], [[2.01885189], [-2.68975237]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose(x, filt, [1, 4, 4, 2]) // print(y) // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % x_grad) // print("filt_grad = %s" % filt_grad) // ``` it('gradient with clones input=[1,3,3,1] f=[2,2,2,1] s=1 padding=valid', async () => { const inputDepth = 1; const outputDepth = 2; const inputShape = [1, 3, 3, inputDepth]; const filterSize = 2; const stride = 1; const pad = 'valid'; const filterShape = [filterSize, filterSize, outputDepth, inputDepth]; const x = tf.tensor4d([[ [[-0.14656299], [0.32942239], [-1.90302866]], [[-0.06487813], [-2.02637842], [-1.83669377]], [[0.82650784], [-0.89249092], [0.01207666]] ]], inputShape); const filt = tf.tensor4d([ [[[-0.48280062], [1.26770487]], [[-0.83083738], [0.54341856]]], [[[-0.274904], [0.73111374]], [[2.01885189], [-2.68975237]]] ], filterShape); const grads = tf.grads((x, filter) => tf.conv2dTranspose(x.clone(), filter.clone(), [1, 4, 4, outputDepth], stride, pad) .clone()); const dy = tf.ones([1, 4, 4, outputDepth]); const [xGrad, filtGrad] = grads([x, filt], dy); const expectedXGrad = tf.ones([1, 3, 3, 1]).mul(tf.scalar(0.2827947)); expectArraysClose(await xGrad.data(), await expectedXGrad.data()); const expectedFiltGrad = tf.ones([2, 2, 2, 1]).mul(tf.scalar(-5.70202599)); expectArraysClose(await filtGrad.data(), await expectedFiltGrad.data()); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([ // [[[-0.36541713], [-0.53973116]], [[0.01731674], [0.90227772]]] // ]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[-0.01423461], [-1.00267384]], [[1.61163029], [0.66302646]]], // [[[-0.46900087], [-0.78649444]], [[0.87780536], [-0.84551637]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose(x, filt, [1, 4, 4, 2], strides=(2, // 2)) print(y) // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % -x_grad) // print("filt_grad = %s" % -filt_grad) // ``` it('gradient input=[1,2,2,1] f=[2,2,2,1] s=[2,2] padding=valid', async () => { const inputDepth = 1; const outputDepth = 2; const inputShape = [1, 2, 2, inputDepth]; const filterSize = 2; const stride = [2, 2]; const pad = 'valid'; const filterShape = [filterSize, filterSize, outputDepth, inputDepth]; const x = tf.tensor4d([[[[-0.36541713], [-0.53973116]], [[0.01731674], [0.90227772]]]], inputShape); const filt = tf.tensor4d([ [[[-0.01423461], [-1.00267384]], [[1.61163029], [0.66302646]]], [[[-0.46900087], [-0.78649444]], [[0.87780536], [-0.84551637]]] ], filterShape); const grads = tf.grads((x, filter) => tf.conv2dTranspose(x, filter, [1, 4, 4, outputDepth], stride, pad)); const dy = tf.ones([1, 4, 4, outputDepth]).mul(tf.scalar(-1)); const [xGrad, filtGrad] = grads([x, filt], dy); const expectedXGrad = tf.ones([1, 2, 2, 1]).mul(tf.scalar(-0.03454196)); expectArraysClose(await xGrad.data(), await expectedXGrad.data()); expect(xGrad.shape).toEqual([1, 2, 2, 1]); const expectedFiltGrad = tf.ones([2, 2, 2, 1]).mul(tf.scalar(-0.01444618)); expectArraysClose(await filtGrad.data(), await expectedFiltGrad.data()); expect(filtGrad.shape).toEqual([2, 2, 2, 1]); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([[ // [[1.52433065], [-0.77053435], [-0.64562341]], // [[0.77962889], [1.58413887], [-0.25581856]], // [[-0.58966221], [0.05411662], [0.70749138]] // ]]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], // [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose( // x, filt, [1, 3, 3, 2], strides=(1, 1), padding='same') // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % x_grad) // print("filt_grad = %s" % filt_grad) // ``` it('gradient input=[1,3,3,1] f=[2,2,2,1] s=[1,1] padding=same', async () => { const inputDepth = 1; const outputDepth = 2; const inputShape = [1, 3, 3, inputDepth]; const filterSize = 2; const stride = [1, 1]; const pad = 'same'; const filterShape = [filterSize, filterSize, outputDepth, inputDepth]; const x = tf.tensor4d([[ [[1.52433065], [-0.77053435], [-0.64562341]], [[0.77962889], [1.58413887], [-0.25581856]], [[-0.58966221], [0.05411662], [0.70749138]] ]], inputShape); const filt = tf.tensor4d([ [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] ], filterShape); const grads = tf.grads((x, filter) => tf.conv2dTranspose(x, filter, [1, 3, 3, outputDepth], stride, pad)); const dy = tf.ones([1, 3, 3, outputDepth]); const [xGrad, filtGrad] = grads([x, filt], dy); expectArraysClose(await xGrad.array(), [[ [[1.30709858], [1.30709858], [-0.92814366]], [[1.30709858], [1.30709858], [-0.92814366]], [[1.19666437], [1.19666437], [-0.85476589]] ]]); expectArraysClose(await filtGrad.array(), [ [[[2.38806788], [2.38806788]], [[2.58201847], [2.58201847]]], [[[2.2161221], [2.2161221]], [[3.11756406], [3.11756406]]] ]); }); it('gradient input=[1,3,3,1] f=[2,2,2,1] s=[1,1] p=explicit', async () => { const inputDepth = 1; const outputDepth = 2; const inputShape = [1, 3, 3, inputDepth]; const filterSize = 2; const stride = [1, 1]; const pad = [[0, 0], [0, 1], [0, 1], [0, 0]]; const filterShape = [filterSize, filterSize, outputDepth, inputDepth]; const x = tf.tensor4d([[ [[1.52433065], [-0.77053435], [-0.64562341]], [[0.77962889], [1.58413887], [-0.25581856]], [[-0.58966221], [0.05411662], [0.70749138]] ]], inputShape); const filt = tf.tensor4d([ [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] ], filterShape); const grads = tf.grads((x, filter) => tf.conv2dTranspose(x, filter, [1, 3, 3, outputDepth], stride, pad)); const dy = tf.ones([1, 3, 3, outputDepth]); const [xGrad, filtGrad] = grads([x, filt], dy); expectArraysClose(await xGrad.array(), [[ [[1.30709858], [1.30709858], [-0.92814366]], [[1.30709858], [1.30709858], [-0.92814366]], [[1.19666437], [1.19666437], [-0.85476589]] ]]); expectArraysClose(await filtGrad.array(), [ [[[2.38806788], [2.38806788]], [[2.58201847], [2.58201847]]], [[[2.2161221], [2.2161221]], [[3.11756406], [3.11756406]]] ]); }); // Reference (Python) TensorFlow code: // // ```py // import numpy as np // import tensorflow as tf // // tf.enable_eager_execution() // // x = tf.constant(np.array([[ // [[1.52433065], [-0.77053435]], [[0.77962889], [1.58413887]], // ]]).astype(np.float32)) // filt = tf.constant(np.array([ // [[[0.11178388], [-0.96654977]], [[1.21021296], [0.84121729]]], // [[[0.34968338], [-0.42306114]], [[1.27395733], [-1.09014535]]] // ]).astype(np.float32)) // // with tf.GradientTape() as g: // g.watch(x) // g.watch(filt) // y = tf.keras.backend.conv2d_transpose( // x, filt, [1, 3, 3, 2], strides=(2, 2), padding='same') // print(y.shape) // (x_grad, filt_grad) = g.gradient(y, [x, filt]) // // print("x_grad = %s" % x_grad) // print("filt_grad = %s" % filt_grad) // ``` it('gradient input=[1,2,2,2] f=[2,2,2,1] s=[2,2] padding=same', async () => { const inputDepth = 2; const outputDepth = 2; const inputShape = [1, 2, 2, inputDepth]; const filterSize = 2; const stride = [2, 2]; const pad = 'same'; const filterShape = [filterSize, filterSize, outputDepth, inputDepth]; const x = tf.tensor4d([[ [[-1.81506593, 1.00900095], [-0.05199118, 0.26311377]], [[-1.18469792, -0.34780521], [2.04971242, -0.65154692]] ]], inputShape); const filt = tf.tensor4d([ [ [[0.19529686, -0.79594708], [0.70314057, -0.06081263]], [[0.28724744, 0.88522715], [-0.51824096, -0.97120989]] ], [ [[0.51872197, -1.17569193], [1.28316791, -0.81225092]], [[-0.44221532, 0.70058174], [-0.4849217, 0.03806348]] ] ], filterShape); const grads = tf.grads((x, filter) => tf.conv2dTranspose(x, filter, [1, 3, 3, outputDepth], stride, pad)); const dy = tf.ones([1, 3, 3, outputDepth]); const [xGrad, filtGrad] = grads([x, filt], dy); expectArraysClose(await xGrad.data(), [ 1.54219678, -2.19204008, 2.70032732, -2.84470257, 0.66744391, -0.94274245, 0.89843743, -0.85675972 ]); expect(xGrad.shape).toEqual([1, 2, 2, 2]); expectArraysClose(await filtGrad.data(), [ -1.00204261, 0.27276259, -1.00204261, 0.27276259, -2.99976385, 0.66119574, -2.99976385, 0.66119574, -1.86705711, 1.27211472, -1.86705711, 1.27211472, -1.81506593, 1.00900095, -1.81506593, 1.00900095 ]); expect(filtGrad.shape).toEqual([2, 2, 2, 2]); }); it('throws when x is not rank 3', () => { const origInputDepth = 1; const origOutputDepth = 1; const fSize = 2; const origPad = 0; const origStride = 1; // tslint:disable-next-line:no-any const x = tf.tensor2d([2, 2], [2, 1]); const w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); expect(() => tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad)) .toThrowError(); }); it('throws when weights is not rank 4', () => { const origInputDepth = 1; const origOutputDepth = 1; const inputShape = [1, 1, origOutputDepth]; const fSize = 2; const origPad = 0; const origStride = 1; const x = tf.tensor3d([2], inputShape); // tslint:disable-next-line:no-any const w = tf.tensor3d([3, 1, 5, 0], [fSize, fSize, origInputDepth]); expect(() => tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad)) .toThrowError(); }); it('throws when x depth does not match weights original output depth', () => { const origInputDepth = 1; const origOutputDepth = 2; const wrongOrigOutputDepth = 3; const inputShape = [1, 1, origOutputDepth]; const fSize = 2; const origPad = 0; const origStride = 1; const x = tf.tensor3d([2, 2], inputShape); const w = tf.randomNormal([fSize, fSize, origInputDepth, wrongOrigOutputDepth]); expect(() => tf.conv2dTranspose(x, w, [2, 2, 2], origStride, origPad)) .toThrowError(); }); it('throws when passed x as a non-tensor', () => { const origInputDepth = 1; const origOutputDepth = 1; const fSize = 2; const origPad = 0; const origStride = 1; const w = tf.tensor4d([3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]); expect(() => tf.conv2dTranspose({}, w, [2, 2, 1], origStride, origPad)) .toThrowError(/Argument 'x' passed to 'conv2dTranspose' must be a Tensor/); }); it('throws when passed filter as a non-tensor', () => { const origOutputDepth = 1; const inputShape = [1, 1, origOutputDepth]; const origPad = 0; const origStride = 1; const x = tf.tensor3d([2], inputShape); expect(() => tf.conv2dTranspose(x, {}, [2, 2, 1], origStride, origPad)) .toThrowError(/Argument 'filter' passed to 'conv2dTranspose' must be a Tensor/); }); it('accepts a tensor-like object', async () => { const origPad = 0; const origStride = 1; const x = [[[2]]]; // 1x1x1 const w = [[[[3]], [[1]]], [[[5]], [[0]]]]; // 2x2x1x1 const result = tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad); const expected = [6, 2, 10, 0]; expect(result.shape).toEqual([2, 2, 1]); expectArraysClose(await result.data(), expected); }); it('input=8x8x8,output=4x4x8,f=8,s=1,inDepth=8,p=same vec4', async () => { const origInputDepth = 8; const origOutputDepth = 8; const inputShape = [1, 8, 8, origOutputDepth]; const fSize = 8; const origPad = 'same'; const origStride = [1, 1]; const wShape = [fSize, fSize, origInputDepth, origOutputDepth]; const inputData = []; for (let i = 0; i < fSize * fSize * origInputDepth; i++) { inputData.push(i % 5); } const wData = []; for (let i = 0; i < fSize * fSize * origInputDepth * origOutputDepth; i++) { wData.push(i % 5); } const x = tf.tensor4d(inputData, inputShape); const w = tf.tensor4d(wData, wShape); const result = tf.conv2dTranspose(x, w, [1, 4, 4, origInputDepth], origStride, origPad); expect(result.shape).toEqual([1, 4, 4, 8]); const expected = [ 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550, 506, 512, 533, 469, 550 ]; expectArraysClose(await result.data(), expected); }); }); //# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiY29udjJkX3RyYW5zcG9zZV90ZXN0LmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvY29udjJkX3RyYW5zcG9zZV90ZXN0LnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILE9BQU8sS0FBSyxFQUFFLE1BQU0sVUFBVSxDQUFDO0FBQy9CLE9BQU8sRUFBQyxRQUFRLEVBQUUsaUJBQWlCLEVBQUMsTUFBTSxpQkFBaUIsQ0FBQztBQUM1RCxPQUFPLEVBQUMsaUJBQWlCLEVBQUMsTUFBTSxjQUFjLENBQUM7QUFHL0MsaUJBQWlCLENBQUMsaUJBQWlCLEVBQUUsUUFBUSxFQUFFLEdBQUcsRUFBRTtJQUNsRCxFQUFFLENBQUMsOEJBQThCLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDNUMsTUFBTSxjQUFjLEdBQUcsQ0FBQyxDQUFDO1FBQ3pCLE1BQU0sZUFBZSxHQUFHLENBQUMsQ0FBQztRQUMxQixNQUFNLFVBQVUsR0FBNkIsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLGVBQWUsQ0FBQyxDQUFDO1FBQ3JFLE1BQU0sS0FBSyxHQUFHLENBQUMsQ0FBQztRQUNoQixNQUFNLE9BQU8sR0FBRyxDQUFDLENBQUM7UUFDbEIsTUFBTSxVQUFVLEdBQUcsQ0FBQyxDQUFDO1FBRXJCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUN2QyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxjQUFjLEVBQUUsZUFBZSxDQUFDLENBQUMsQ0FBQztRQUVuRSxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsZUFBZSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLFVBQVUsRUFBRSxPQUFPLENBQUMsQ0FBQztRQUN4RSxNQUFNLFFBQVEsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBRS9CLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3hDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLFFBQVEsQ0FBQyxDQUFDO0lBQ25ELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLGlDQUFpQyxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQy9DLE1BQU0sY0FBYyxHQUFHLENBQUMsQ0FBQztRQUN6QixNQUFNLGVBQWUsR0FBRyxDQUFDLENBQUM7UUFDMUIsTUFBTSxVQUFVLEdBQ1osQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUMvQixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUM7UUFDaEIsTUFBTSxPQUFPLEdBQUcsTUFBTSxDQUFDO1FBQ3ZCLE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQztRQUVyQixNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQjtZQUNFLElBQUksRUFBRSxJQUFJLEVBQUUsR0FBRyxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtZQUNyRSxFQUFFLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJO1NBQ3JCLEVBQ0QsVUFBVSxDQUFDLENBQUM7UUFDaEIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDakIsQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFDdEUsQ0FBQyxLQUFLLEVBQUUsS0FBSyxFQUFFLGNBQWMsRUFBRSxlQUFlLENBQUMsQ0FBQyxDQUFDO1FBRXJELE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxlQUFlLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLFVBQVUsRUFBRSxPQUFPLENBQUMsQ0FBQztRQUMzRSxNQUFNLFFBQVEsR0FBRyxDQUFDLElBQUksRUFBRSxLQUFLLEVBQUUsSUFBSSxFQUFFLEtBQUssRUFBRSxLQUFLLEVBQUUsS0FBSyxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxDQUFDLENBQUM7UUFFNUUsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQzNDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLFFBQVEsQ0FBQyxDQUFDO0lBQ25ELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHFDQUFxQyxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ25ELE1BQU0sY0FBYyxHQUFHLENBQUMsQ0FBQztRQUN6QixNQUFNLGVBQWUsR0FBRyxDQUFDLENBQUM7UUFDMUIsTUFBTSxVQUFVLEdBQ1osQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUMvQixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUM7UUFDaEIsTUFBTSxPQUFPLEdBQ1QsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBb0MsQ0FBQztRQUN4RSxNQUFNLFVBQVUsR0FBRyxDQUFDLENBQUM7UUFFckIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDakI7WUFDRSxJQUFJLEVBQUUsSUFBSSxFQUFFLEdBQUcsRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUk7WUFDckUsRUFBRSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtTQUNyQixFQUNELFVBQVUsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxDQUFDLEVBQ3RFLENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxjQUFjLEVBQUUsZUFBZSxDQUFDLENBQUMsQ0FBQztRQUVyRCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsZUFBZSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxVQUFVLEVBQUUsT0FBTyxDQUFDLENBQUM7UUFDM0UsTUFBTSxRQUFRLEdBQUcsQ0FBQyxJQUFJLEVBQUUsS0FBSyxFQUFFLElBQUksRUFBRSxLQUFLLEVBQUUsS0FBSyxFQUFFLEtBQUssRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO1FBRTVFLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUMzQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUNuRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyx1Q0FBdUMsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNyRCxNQUFNLGNBQWMsR0FBRyxDQUFDLENBQUM7UUFDekIsTUFBTSxlQUFlLEdBQUcsQ0FBQyxDQUFDO1FBQzFCLE1BQU0sVUFBVSxHQUNaLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsZUFBZSxDQUFDLENBQUM7UUFDL0IsTUFBTSxLQUFLLEdBQUcsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sT0FBTyxHQUFHLENBQUMsQ0FBQztRQUNsQixNQUFNLFVBQVUsR0FBRyxDQUFDLENBQUM7UUFFckIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUMxQyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxjQUFjLEVBQUUsZUFBZSxDQUFDLENBQUMsQ0FBQztRQUVuRSxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsZUFBZSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxVQUFVLEVBQUUsT0FBTyxDQUFDLENBQUM7UUFDM0UsTUFBTSxRQUFRLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLEVBQUUsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFFNUMsTUFBTSxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQzNDLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLFFBQVEsQ0FBQyxDQUFDO0lBQ25ELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLG1EQUFtRCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ2pFLE1BQU0sY0FBYyxHQUFHLENBQUMsQ0FBQztRQUN6QixNQUFNLGVBQWUsR0FBRyxDQUFDLENBQUM7UUFDMUIsTUFBTSxVQUFVLEdBQ1osQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUMvQixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUM7UUFDaEIsTUFBTSxPQUFPLEdBQUcsTUFBTSxDQUFDO1FBQ3ZCLE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQztRQUVyQixNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxFQUFFLFVBQVUsQ0FBQyxDQUFDO1FBQ3BFLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxDQUFDLEVBQ3RFLENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxjQUFjLEVBQUUsZUFBZSxDQUFDLENBQUMsQ0FBQztRQUVyRCxNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsZUFBZSxDQUM3QixDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsY0FBYyxDQUFDLEVBQUUsVUFBVSxFQUFFLE9BQU8sQ0FBQyxDQUFDO1FBQzFELE1BQU0sUUFBUSxHQUNWLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLENBQUMsRUFBRSxHQUFHLENBQUMsQ0FBQztRQUV0RSxNQUFNLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLGNBQWMsQ0FBQyxDQUFDLENBQUM7UUFDeEQsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDbkQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsb0RBQW9ELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDbEUsTUFBTSxjQUFjLEdBQUcsQ0FBQyxDQUFDO1FBQ3pCLE1BQU0sZUFBZSxHQUFHLENBQUMsQ0FBQztRQUMxQixNQUFNLFVBQVUsR0FDWixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLGVBQWUsQ0FBQyxDQUFDO1FBQy9CLE1BQU0sS0FBSyxHQUFHLENBQUMsQ0FBQztRQUNoQixNQUFNLE9BQU8sR0FBRyxNQUFNLENBQUM7UUFDdkIsTUFBTSxVQUFVLEdBQUcsQ0FBQyxDQUFDO1FBQ3JCLE1BQU0sZUFBZSxHQUFHLE9BQU8sQ0FBQztRQUVoQyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQjtZQUNFLElBQUksRUFBRSxJQUFJLEVBQUUsR0FBRyxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtZQUNyRSxFQUFFLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJO1NBQ3JCLEVBQ0QsVUFBVSxDQUFDLENBQUM7UUFDaEIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDakIsQ0FBQyxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLENBQUMsRUFDdEUsQ0FBQyxLQUFLLEVBQUUsS0FBSyxFQUFFLGNBQWMsRUFBRSxlQUFlLENBQUMsQ0FBQyxDQUFDO1FBRXJELE1BQU0sQ0FDRixHQUFHLEVBQUUsQ0FBQyxFQUFFLENBQUMsZUFBZSxDQUNwQixDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsVUFBVSxFQUFFLE9BQU8sRUFBRSxlQUFlLENBQUMsQ0FBQzthQUM3RCxZQUFZLEVBQUUsQ0FBQztJQUN0QixDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxxREFBcUQsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNuRSxNQUFNLGNBQWMsR0FBRyxDQUFDLENBQUM7UUFDekIsTUFBTSxlQUFlLEdBQUcsQ0FBQyxDQUFDO1FBQzFCLE1BQU0sVUFBVSxHQUNaLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsZUFBZSxDQUFDLENBQUM7UUFDL0IsTUFBTSxLQUFLLEdBQUcsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sT0FBTyxHQUFHLE9BQU8sQ0FBQztRQUN4QixNQUFNLFVBQVUsR0FBRyxDQUFDLENBQUM7UUFDckIsTUFBTSxlQUFlLEdBQUcsT0FBTyxDQUFDO1FBRWhDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCO1lBQ0UsSUFBSSxFQUFFLElBQUksRUFBRSxHQUFHLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJO1lBQ3JFLEVBQUUsRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUk7U0FDckIsRUFDRCxVQUFVLENBQUMsQ0FBQztRQUNoQixNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQixDQUFDLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsQ0FBQyxFQUN0RSxDQUFDLEtBQUssRUFBRSxLQUFLLEVBQUUsY0FBYyxFQUFFLGVBQWUsQ0FBQyxDQUFDLENBQUM7UUFFckQsTUFBTSxDQUNGLEdBQUcsRUFBRSxDQUFDLEVBQUUsQ0FBQyxlQUFlLENBQ3BCLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxVQUFVLEVBQUUsT0FBTyxFQUFFLGVBQWUsQ0FBQyxDQUFDO2FBQzdELFlBQVksRUFBRSxDQUFDO0lBQ3RCLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLG9FQUFvRSxFQUNwRSxLQUFLLElBQUksRUFBRTtRQUNULE1BQU0sY0FBYyxHQUFHLENBQUMsQ0FBQztRQUN6QixNQUFNLGVBQWUsR0FBRyxDQUFDLENBQUM7UUFDMUIsTUFBTSxVQUFVLEdBQ1osQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUMvQixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUM7UUFDaEIsTUFBTSxPQUFPLEdBQUcsR0FBRyxDQUFDO1FBQ3BCLE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQztRQUNyQixNQUFNLGVBQWUsR0FBRyxPQUFPLENBQUM7UUFFaEMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDakI7WUFDRSxJQUFJLEVBQUUsSUFBSSxFQUFFLEdBQUcsRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtZQUMvRCxJQUFJLEVBQUUsRUFBRSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtTQUMzQixFQUNELFVBQVUsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCO1lBQ0UsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHO1lBQy9ELEdBQUc7U0FDSixFQUNELENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxjQUFjLEVBQUUsZUFBZSxDQUFDLENBQUMsQ0FBQztRQUVyRCxNQUFNLENBQ0YsR0FBRyxFQUFFLENBQUMsRUFBRSxDQUFDLGVBQWUsQ0FDcEIsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLFVBQVUsRUFBRSxPQUFPLEVBQUUsZUFBZSxDQUFDLENBQUM7YUFDN0QsWUFBWSxFQUFFLENBQUM7SUFDdEIsQ0FBQyxDQUFDLENBQUM7SUFFTixFQUFFLENBQUMsd0VBQXdFO1FBQ3BFLFFBQVEsRUFDWixLQUFLLElBQUksRUFBRTtRQUNULE1BQU0sY0FBYyxHQUFHLENBQUMsQ0FBQztRQUN6QixNQUFNLGVBQWUsR0FBRyxDQUFDLENBQUM7UUFDMUIsTUFBTSxVQUFVLEdBQ1osQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUMvQixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUM7UUFDaEIsTUFBTSxPQUFPLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FDZCxDQUFDO1FBQ3BDLE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQztRQUNyQixNQUFNLGVBQWUsR0FBRyxPQUFPLENBQUM7UUFFaEMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDakI7WUFDRSxJQUFJLEVBQUUsSUFBSSxFQUFFLEdBQUcsRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtZQUMvRCxJQUFJLEVBQUUsRUFBRSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsSUFBSTtTQUMzQixFQUNELFVBQVUsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCO1lBQ0UsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEVBQUUsRUFBRSxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLEdBQUcsRUFBRSxHQUFHO1lBQy9ELEdBQUc7U0FDSixFQUNELENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxjQUFjLEVBQUUsZUFBZSxDQUFDLENBQUMsQ0FBQztRQUVyRCxNQUFNLENBQ0YsR0FBRyxFQUFFLENBQUMsRUFBRSxDQUFDLGVBQWUsQ0FDcEIsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLFVBQVUsRUFBRSxPQUFPLEVBQUUsZUFBZSxDQUFDLENBQUM7YUFDN0QsWUFBWSxFQUFFLENBQUM7SUFDdEIsQ0FBQyxDQUFDLENBQUM7SUFFTixzQ0FBc0M7SUFDdEMsRUFBRTtJQUNGLFFBQVE7SUFDUixxQkFBcUI7SUFDckIsMEJBQTBCO0lBQzFCLEVBQUU7SUFDRiw4QkFBOEI7SUFDOUIsRUFBRTtJQUNGLDhCQUE4QjtJQUM5QixvREFBb0Q7SUFDcEQscURBQXFEO0lBQ3JELGtEQUFrRDtJQUNsRCwwQkFBMEI7SUFDMUIsZ0NBQWdDO0lBQ2hDLHNFQUFzRTtJQUN0RSxtRUFBbUU7SUFDbkUseUJBQXlCO0lBQ3pCLEVBQUU7SUFDRiwrQkFBK0I7SUFDL0IsZUFBZTtJQUNmLGtCQUFrQjtJQUNsQixpRUFBaUU7SUFDakUsYUFBYTtJQUNiLGlEQUFpRDtJQUNqRCxFQUFFO0lBQ0YsZ0NBQWdDO0lBQ2hDLHNDQUFzQztJQUN0QyxNQUFNO0lBQ04sRUFBRSxDQUFDLG9FQUFvRSxFQUNwRSxLQUFLLElBQUksRUFBRTtRQUNULE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQztRQUNyQixNQUFNLFdBQVcsR0FBRyxDQUFDLENBQUM7UUFDdEIsTUFBTSxVQUFVLEdBQ1osQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUMxQixNQUFNLFVBQVUsR0FBRyxDQUFDLENBQUM7UUFDckIsTUFBTSxNQUFNLEdBQUcsQ0FBQyxDQUFDO1FBQ2pCLE1BQU0sR0FBRyxHQUFHLE9BQU8sQ0FBQztRQUVwQixNQUFNLFdBQVcsR0FDYixDQUFDLFVBQVUsRUFBRSxVQUFVLEVBQUUsV0FBVyxFQUFFLFVBQVUsQ0FBQyxDQUFDO1FBRXRELE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCLENBQUM7Z0JBQ0MsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUM7Z0JBQzVDLENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUM7Z0JBQzdDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQzthQUM1QyxDQUFDLEVBQ0YsVUFBVSxDQUFDLENBQUM7UUFDaEIsTUFBTSxJQUFJLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDcEI7WUFDRSxDQUFDLENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7WUFDOUQsQ0FBQyxDQUFDLENBQUMsQ0FBQyxRQUFRLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1NBQzdELEVBQ0QsV0FBVyxDQUFDLENBQUM7UUFFakIsTUFBTSxLQUFLLEdBQUcsRUFBRSxDQUFDLEtBQUssQ0FDbEIsQ0FBQyxDQUFjLEVBQUUsTUFBbUIsRUFBRSxFQUFFLENBQ3BDLEVBQUUsQ0FBQyxlQUFlLENBQ1osQ0FBQyxDQUFDLEtBQUssRUFBRSxFQUFFLE1BQU0sQ0FBQyxLQUFLLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxFQUFFLE1BQU0sRUFDekQsR0FBRyxDQUFDO2FBQ0wsS0FBSyxFQUFFLENBQUMsQ0FBQztRQUN0QixNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsV0FBVyxDQUFDLENBQUMsQ0FBQztRQUMzQyxNQUFNLENBQUMsS0FBSyxFQUFFLFFBQVEsQ0FBQyxHQUFHLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQztRQUUvQyxNQUFNLGFBQWEsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxDQUFDO1FBQ3RFLGlCQUFpQixDQUFDLE1BQU0sS0FBSyxDQUFDLElBQUksRUFBRSxFQUFFLE1BQU0sYUFBYSxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7UUFDbEUsTUFBTSxnQkFBZ0IsR0FDbEIsRUFBRSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxNQUFNLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1FBQ3RELGlCQUFpQixDQUFDLE1BQU0sUUFBUSxDQUFDLElBQUksRUFBRSxFQUFFLE1BQU0sZ0JBQWdCLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQztJQUMxRSxDQUFDLENBQUMsQ0FBQztJQUVOLHNDQUFzQztJQUN0QyxFQUFFO0lBQ0YsUUFBUTtJQUNSLHFCQUFxQjtJQUNyQiwwQkFBMEI7SUFDMUIsRUFBRTtJQUNGLDhCQUE4QjtJQUM5QixFQUFFO0lBQ0YsNkJBQTZCO0lBQzdCLHFFQUFxRTtJQUNyRSx5QkFBeUI7SUFDekIsZ0NBQWdDO0lBQ2hDLHNFQUFzRTtJQUN0RSxzRUFBc0U7SUFDdEUseUJBQXlCO0lBQ3pCLEVBQUU7SUFDRiwrQkFBK0I7SUFDL0IsZUFBZTtJQUNmLGtCQUFrQjtJQUNsQiw2RUFBNkU7SUFDN0UsaUJBQWlCO0lBQ2pCLGlEQUFpRDtJQUNqRCxFQUFFO0lBQ0YsaUNBQWlDO0lBQ2pDLHVDQUF1QztJQUN2QyxNQUFNO0lBQ04sRUFBRSxDQUFDLDREQUE0RCxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQzFFLE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQztRQUNyQixNQUFNLFdBQVcsR0FBRyxDQUFDLENBQUM7UUFDdEIsTUFBTSxVQUFVLEdBQXFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsVUFBVSxDQUFDLENBQUM7UUFDM0UsTUFBTSxVQUFVLEdBQUcsQ0FBQyxDQUFDO1FBQ3JCLE1BQU0sTUFBTSxHQUFxQixDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUN4QyxNQUFNLEdBQUcsR0FBRyxPQUFPLENBQUM7UUFFcEIsTUFBTSxXQUFXLEdBQ2IsQ0FBQyxVQUFVLEVBQUUsVUFBVSxFQUFFLFdBQVcsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUV0RCxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQixDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQ2hFLFVBQVUsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sSUFBSSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ3BCO1lBQ0UsQ0FBQyxDQUFDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1lBQzlELENBQUMsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1NBQ2hFLEVBQ0QsV0FBVyxDQUFDLENBQUM7UUFFakIsTUFBTSxLQUFLLEdBQUcsRUFBRSxDQUFDLEtBQUssQ0FDbEIsQ0FBQyxDQUFjLEVBQUUsTUFBbUIsRUFBRSxFQUFFLENBQ3BDLEVBQUUsQ0FBQyxlQUFlLENBQUMsQ0FBQyxFQUFFLE1BQU0sRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxFQUFFLE1BQU0sRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDO1FBQzVFLE1BQU0sRUFBRSxHQUFHLEVBQUUsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxXQUFXLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUM5RCxNQUFNLENBQUMsS0FBSyxFQUFFLFFBQVEsQ0FBQyxHQUFHLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQztRQUUvQyxNQUFNLGFBQWEsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLE1BQU0sQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7UUFDeEUsaUJBQWlCLENBQUMsTUFBTSxLQUFLLENBQUMsSUFBSSxFQUFFLEVBQUUsTUFBTSxhQUFhLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQztRQUNsRSxNQUFNLENBQUMsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFMUMsTUFBTSxnQkFBZ0IsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLE1BQU0sQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7UUFDM0UsaUJBQWlCLENBQUMsTUFBTSxRQUFRLENBQUMsSUFBSSxFQUFFLEVBQUUsTUFBTSxnQkFBZ0IsQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1FBQ3hFLE1BQU0sQ0FBQyxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUMvQyxDQUFDLENBQUMsQ0FBQztJQUVILHNDQUFzQztJQUN0QyxFQUFFO0lBQ0YsUUFBUTtJQUNSLHFCQUFxQjtJQUNyQiwwQkFBMEI7SUFDMUIsRUFBRTtJQUNGLDhCQUE4QjtJQUM5QixFQUFFO0lBQ0YsOEJBQThCO0lBQzlCLG9EQUFvRDtJQUNwRCxtREFBbUQ7SUFDbkQsa0RBQWtEO0lBQ2xELDBCQUEwQjtJQUMxQixnQ0FBZ0M7SUFDaEMscUVBQXFFO0lBQ3JFLHFFQUFxRTtJQUNyRSx5QkFBeUI7SUFDekIsRUFBRTtJQUNGLCtCQUErQjtJQUMvQixlQUFlO0lBQ2Ysa0JBQWtCO0lBQ2xCLDJDQUEyQztJQUMzQywrREFBK0Q7SUFDL0QsaURBQWlEO0lBQ2pELEVBQUU7SUFDRixnQ0FBZ0M7SUFDaEMsc0NBQXNDO0lBQ3RDLE1BQU07SUFDTixFQUFFLENBQUMsMkRBQTJELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDekUsTUFBTSxVQUFVLEdBQUcsQ0FBQyxDQUFDO1FBQ3JCLE1BQU0sV0FBVyxHQUFHLENBQUMsQ0FBQztRQUN0QixNQUFNLFVBQVUsR0FBcUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUMzRSxNQUFNLFVBQVUsR0FBRyxDQUFDLENBQUM7UUFDckIsTUFBTSxNQUFNLEdBQXFCLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3hDLE1BQU0sR0FBRyxHQUFHLE1BQU0sQ0FBQztRQUVuQixNQUFNLFdBQVcsR0FDYixDQUFDLFVBQVUsRUFBRSxVQUFVLEVBQUUsV0FBVyxFQUFFLFVBQVUsQ0FBQyxDQUFDO1FBRXRELE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQ2pCLENBQUM7Z0JBQ0MsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUM7Z0JBQzVDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQztnQkFDM0MsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDO2FBQzVDLENBQUMsRUFDRixVQUFVLENBQUMsQ0FBQztRQUNoQixNQUFNLElBQUksR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNwQjtZQUNFLENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7WUFDN0QsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1NBQy9ELEVBQ0QsV0FBVyxDQUFDLENBQUM7UUFFakIsTUFBTSxLQUFLLEdBQUcsRUFBRSxDQUFDLEtBQUssQ0FDbEIsQ0FBQyxDQUFjLEVBQUUsTUFBbUIsRUFBRSxFQUFFLENBQ3BDLEVBQUUsQ0FBQyxlQUFlLENBQUMsQ0FBQyxFQUFFLE1BQU0sRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxFQUFFLE1BQU0sRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDO1FBQzVFLE1BQU0sRUFBRSxHQUFHLEVBQUUsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxXQUFXLENBQUMsQ0FBQyxDQUFDO1FBQzNDLE1BQU0sQ0FBQyxLQUFLLEVBQUUsUUFBUSxDQUFDLEdBQUcsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxFQUFFLEVBQUUsQ0FBQyxDQUFDO1FBRS9DLGlCQUFpQixDQUFDLE1BQU0sS0FBSyxDQUFDLEtBQUssRUFBRSxFQUFFLENBQUM7Z0JBQ3BCLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQztnQkFDM0MsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDO2dCQUMzQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUM7YUFDNUMsQ0FBQyxDQUFDLENBQUM7UUFDdEIsaUJBQWlCLENBQUMsTUFBTSxRQUFRLENBQUMsS0FBSyxFQUFFLEVBQUU7WUFDeEMsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7WUFDNUQsQ0FBQyxDQUFDLENBQUMsU0FBUyxDQUFDLEVBQUUsQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7U0FDM0QsQ0FBQyxDQUFDO0lBQ0wsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMseURBQXlELEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDdkUsTUFBTSxVQUFVLEdBQUcsQ0FBQyxDQUFDO1FBQ3JCLE1BQU0sV0FBVyxHQUFHLENBQUMsQ0FBQztRQUN0QixNQUFNLFVBQVUsR0FBcUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUMzRSxNQUFNLFVBQVUsR0FBRyxDQUFDLENBQUM7UUFDckIsTUFBTSxNQUFNLEdBQXFCLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3hDLE1BQU0sR0FBRyxHQUNMLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQW9DLENBQUM7UUFFeEUsTUFBTSxXQUFXLEdBQ2IsQ0FBQyxVQUFVLEVBQUUsVUFBVSxFQUFFLFdBQVcsRUFBRSxVQUFVLENBQUMsQ0FBQztRQUV0RCxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUNqQixDQUFDO2dCQUNDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDO2dCQUM1QyxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUM7Z0JBQzNDLENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQzthQUM1QyxDQUFDLEVBQ0YsVUFBVSxDQUFDLENBQUM7UUFDaEIsTUFBTSxJQUFJLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FDcEI7WUFDRSxDQUFDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1lBQzdELENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQztTQUMvRCxFQUNELFdBQVcsQ0FBQyxDQUFDO1FBRWpCLE1BQU0sS0FBSyxHQUFHLEVBQUUsQ0FBQyxLQUFLLENBQ2xCLENBQUMsQ0FBYyxFQUFFLE1BQW1CLEVBQUUsRUFBRSxDQUNwQyxFQUFFLENBQUMsZUFBZSxDQUFDLENBQUMsRUFBRSxNQUFNLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxXQUFXLENBQUMsRUFBRSxNQUFNLEVBQUUsR0FBRyxDQUFDLENBQUMsQ0FBQztRQUM1RSxNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsV0FBVyxDQUFDLENBQUMsQ0FBQztRQUMzQyxNQUFNLENBQUMsS0FBSyxFQUFFLFFBQVEsQ0FBQyxHQUFHLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQztRQUUvQyxpQkFBaUIsQ0FBQyxNQUFNLEtBQUssQ0FBQyxLQUFLLEVBQUUsRUFBRSxDQUFDO2dCQUNwQixDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUM7Z0JBQzNDLENBQUMsQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQztnQkFDM0MsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDO2FBQzVDLENBQUMsQ0FBQyxDQUFDO1FBQ3RCLGlCQUFpQixDQUFDLE1BQU0sUUFBUSxDQUFDLEtBQUssRUFBRSxFQUFFO1lBQ3hDLENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1lBQzVELENBQUMsQ0FBQyxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUMsU0FBUyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsVUFBVSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1NBQzNELENBQUMsQ0FBQztJQUNMLENBQUMsQ0FBQyxDQUFDO0lBRUgsc0NBQXNDO0lBQ3RDLEVBQUU7SUFDRixRQUFRO0lBQ1IscUJBQXFCO0lBQ3JCLDBCQUEwQjtJQUMxQixFQUFFO0lBQ0YsOEJBQThCO0lBQzlCLEVBQUU7SUFDRiw4QkFBOEI7SUFDOUIsbUVBQW1FO0lBQ25FLDBCQUEwQjtJQUMxQixnQ0FBZ0M7SUFDaEMscUVBQXFFO0lBQ3JFLHFFQUFxRTtJQUNyRSx5QkFBeUI7SUFDekIsRUFBRTtJQUNGLCtCQUErQjtJQUMvQixlQUFlO0lBQ2Ysa0JBQWtCO0lBQ2xCLDJDQUEyQztJQUMzQywrREFBK0Q7SUFDL0QsbUJBQW1CO0lBQ25CLGlEQUFpRDtJQUNqRCxFQUFFO0lBQ0YsZ0NBQWdDO0lBQ2hDLHNDQUFzQztJQUN0QyxNQUFNO0lBQ04sRUFBRSxD