UNPKG

@tensorflow/tfjs-core

Version:

Hardware-accelerated JavaScript library for machine intelligence

31 lines (30 loc) 1.75 kB
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/conv2d_backprop_input" /> import { Tensor3D, Tensor4D } from '../tensor'; import * as conv_util from './conv_util'; /** * Computes the derivative of the input of a 2D convolution. * * @param xShape The shape of the input: [batch, height, width, inDepth]. * If length of 3, batch of 1 is assumed. * @param dy The derivative of the output, of rank 4 or rank 3 of shape * `[batch, outHeight, outWidth, outDepth]`. If rank 3, batch of 1 is * assumed. * @param filter The filter, rank 4, of shape * `[filterHeight, filterWidth, inDepth, outDepth]`. * @param strides The strides of the convolution: `[strideHeight, * strideWidth]`. * @param pad The type of padding algorithm used: * - `same` and stride 1: output will be of same size as input, * regardless of filter size. * - `valid`: output will be smaller than input if filter is larger * than 1x1. * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to * "NHWC". Specify the data format of the input and output data. With the * default format "NHWC", the data is stored in the order of: [batch, * height, width, channels]. * @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. If none is * provided, it will default to truncate. */ declare function conv2DBackpropInput_<T extends Tensor3D | Tensor4D>(xShape: [number, number, number, number] | [number, number, number], dy: T, filter: Tensor4D, strides: [number, number] | number, pad: 'valid' | 'same' | number | conv_util.ExplicitPadding, dataFormat?: 'NHWC' | 'NCHW', dimRoundingMode?: 'floor' | 'round' | 'ceil'): T; export declare const conv2DBackpropInput: typeof conv2DBackpropInput_; export {};