@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
124 lines (123 loc) • 5.36 kB
TypeScript
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/browser" />
import { Tensor2D, Tensor3D } from '../tensor';
import { DrawOptions, PixelData, TensorLike } from '../types';
/**
* Creates a `tf.Tensor` from an image.
*
* ```js
* const image = new ImageData(1, 1);
* image.data[0] = 100;
* image.data[1] = 150;
* image.data[2] = 200;
* image.data[3] = 255;
*
* tf.browser.fromPixels(image).print();
* ```
*
* @param pixels The input image to construct the tensor from. The
* supported image types are all 4-channel. You can also pass in an image
* object with following attributes:
* `{data: Uint8Array; width: number; height: number}`
* @param numChannels The number of channels of the output tensor. A
* numChannels value less than 4 allows you to ignore channels. Defaults to
* 3 (ignores alpha channel of input image).
*
* @returns A Tensor3D with the shape `[height, width, numChannels]`.
*
* Note: fromPixels can be lossy in some cases, same image may result in
* slightly different tensor values, if rendered by different rendering
* engines. This means that results from different browsers, or even same
* browser with CPU and GPU rendering engines can be different. See discussion
* in details:
* https://github.com/tensorflow/tfjs/issues/5482
*
* @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}
*/
declare function fromPixels_(pixels: PixelData | ImageData | HTMLImageElement | HTMLCanvasElement | HTMLVideoElement | ImageBitmap, numChannels?: number): Tensor3D;
/**
* Creates a `tf.Tensor` from an image in async way.
*
* ```js
* const image = new ImageData(1, 1);
* image.data[0] = 100;
* image.data[1] = 150;
* image.data[2] = 200;
* image.data[3] = 255;
*
* (await tf.browser.fromPixelsAsync(image)).print();
* ```
* This API is the async version of fromPixels. The API will first
* check |WRAP_TO_IMAGEBITMAP| flag, and try to wrap the input to
* imageBitmap if the flag is set to true.
*
* @param pixels The input image to construct the tensor from. The
* supported image types are all 4-channel. You can also pass in an image
* object with following attributes:
* `{data: Uint8Array; width: number; height: number}`
* @param numChannels The number of channels of the output tensor. A
* numChannels value less than 4 allows you to ignore channels. Defaults to
* 3 (ignores alpha channel of input image).
*
* @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}
*/
export declare function fromPixelsAsync(pixels: PixelData | ImageData | HTMLImageElement | HTMLCanvasElement | HTMLVideoElement | ImageBitmap, numChannels?: number): Promise<Tensor3D>;
/**
* Draws a `tf.Tensor` of pixel values to a byte array or optionally a
* canvas.
*
* When the dtype of the input is 'float32', we assume values in the range
* [0-1]. Otherwise, when input is 'int32', we assume values in the range
* [0-255].
*
* Returns a promise that resolves when the canvas has been drawn to.
*
* @param img A rank-2 tensor with shape `[height, width]`, or a rank-3 tensor
* of shape `[height, width, numChannels]`. If rank-2, draws grayscale. If
* rank-3, must have depth of 1, 3 or 4. When depth of 1, draws
* grayscale. When depth of 3, we draw with the first three components of
* the depth dimension corresponding to r, g, b and alpha = 1. When depth of
* 4, all four components of the depth dimension correspond to r, g, b, a.
* @param canvas The canvas to draw to.
*
* @doc {heading: 'Browser', namespace: 'browser'}
*/
export declare function toPixels(img: Tensor2D | Tensor3D | TensorLike, canvas?: HTMLCanvasElement): Promise<Uint8ClampedArray>;
/**
* Draws a `tf.Tensor` to a canvas.
*
* When the dtype of the input is 'float32', we assume values in the range
* [0-1]. Otherwise, when input is 'int32', we assume values in the range
* [0-255].
*
* @param image The tensor to draw on the canvas. Must match one of
* these shapes:
* - Rank-2 with shape `[height, width`]: Drawn as grayscale.
* - Rank-3 with shape `[height, width, 1]`: Drawn as grayscale.
* - Rank-3 with shape `[height, width, 3]`: Drawn as RGB with alpha set in
* `imageOptions` (defaults to 1, which is opaque).
* - Rank-3 with shape `[height, width, 4]`: Drawn as RGBA.
* @param canvas The canvas to draw to.
* @param options The configuration arguments for image to be drawn and the
* canvas to draw to.
*
* @doc {heading: 'Browser', namespace: 'browser'}
*/
export declare function draw(image: Tensor2D | Tensor3D | TensorLike, canvas: HTMLCanvasElement, options?: DrawOptions): void;
export declare const fromPixels: typeof fromPixels_;
export {};