@tensorflow/tfjs-core
Version:
Hardware-accelerated JavaScript library for machine intelligence
227 lines (226 loc) • 7.65 kB
TypeScript
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/// <amd-module name="@tensorflow/tfjs-core/dist/gradients" />
import { CustomGradientFunc } from './engine';
import { Scalar, Tensor, Variable } from './tensor';
import { NamedTensorMap } from './tensor_types';
import { TensorLike } from './types';
/**
* Provided `f(x)`, returns another function `g(x, dy?)`, which gives the
* gradient of `f(x)` with respect to `x`.
*
* If `dy` is provided, the gradient of `f(x).mul(dy).sum()` with respect to
* `x` is computed instead. `f(x)` must take a single tensor `x` and return a
* single tensor `y`. If `f()` takes multiple inputs, use `tf.grads` instead.
*
* ```js
* // f(x) = x ^ 2
* const f = x => x.square();
* // f'(x) = 2x
* const g = tf.grad(f);
*
* const x = tf.tensor1d([2, 3]);
* g(x).print();
* ```
*
* ```js
* // f(x) = x ^ 3
* const f = x => x.pow(tf.scalar(3, 'int32'));
* // f'(x) = 3x ^ 2
* const g = tf.grad(f);
* // f''(x) = 6x
* const gg = tf.grad(g);
*
* const x = tf.tensor1d([2, 3]);
* gg(x).print();
* ```
*
* @param f The function f(x), to compute gradient for.
*
* @doc {heading: 'Training', subheading: 'Gradients'}
*/
declare function grad(f: (x: Tensor) => Tensor): (x: TensorLike | Tensor, dy?: TensorLike | Tensor) => Tensor;
/**
* Provided `f(x1, x2,...)`, returns another function `g([x1, x2,...], dy?)`,
* which gives an array of gradients of `f()` with respect to each input
* [`x1`,`x2`,...].
*
* If `dy` is passed when calling `g()`, the gradient of
* `f(x1,...).mul(dy).sum()` with respect to each input is computed instead.
* The provided `f` must take one or more tensors and return a single tensor
* `y`. If `f()` takes a single input, we recommend using `tf.grad` instead.
*
* ```js
* // f(a, b) = a * b
* const f = (a, b) => a.mul(b);
* // df / da = b, df / db = a
* const g = tf.grads(f);
*
* const a = tf.tensor1d([2, 3]);
* const b = tf.tensor1d([-2, -3]);
* const [da, db] = g([a, b]);
* console.log('da');
* da.print();
* console.log('db');
* db.print();
* ```
*
* @param f The function `f(x1, x2,...)` to compute gradients for.
*
* @doc {heading: 'Training', subheading: 'Gradients'}
*/
declare function grads(f: (...args: Tensor[]) => Tensor): (args: Array<Tensor | TensorLike>, dy?: Tensor | TensorLike) => Tensor[];
/**
* Like `tf.grad`, but also returns the value of `f()`. Useful when `f()`
* returns a metric you want to show.
*
* The result is a rich object with the following properties:
* - grad: The gradient of `f(x)` w.r.t. `x` (result of `tf.grad`).
* - value: The value returned by `f(x)`.
*
* ```js
* // f(x) = x ^ 2
* const f = x => x.square();
* // f'(x) = 2x
* const g = tf.valueAndGrad(f);
*
* const x = tf.tensor1d([2, 3]);
* const {value, grad} = g(x);
*
* console.log('value');
* value.print();
* console.log('grad');
* grad.print();
* ```
*
* @doc {heading: 'Training', subheading: 'Gradients'}
*/
declare function valueAndGrad<I extends Tensor, O extends Tensor>(f: (x: I) => O): (x: I, dy?: O) => {
value: O;
grad: I;
};
/**
* Like `tf.grads`, but returns also the value of `f()`. Useful when `f()`
* returns a metric you want to show.
*
* The result is a rich object with the following properties:
* - grads: The gradients of `f()` w.r.t. each input (result of `tf.grads`).
* - value: The value returned by `f(x)`.
*
* ```js
* // f(a, b) = a * b
* const f = (a, b) => a.mul(b);
* // df/da = b, df/db = a
* const g = tf.valueAndGrads(f);
*
* const a = tf.tensor1d([2, 3]);
* const b = tf.tensor1d([-2, -3]);
* const {value, grads} = g([a, b]);
*
* const [da, db] = grads;
*
* console.log('value');
* value.print();
*
* console.log('da');
* da.print();
* console.log('db');
* db.print();
* ```
*
* @doc {heading: 'Training', subheading: 'Gradients'}
*/
declare function valueAndGrads<O extends Tensor>(f: (...args: Tensor[]) => O): (args: Tensor[], dy?: O) => {
grads: Tensor[];
value: O;
};
/**
* Computes and returns the gradient of f(x) with respect to the list of
* trainable variables provided by `varList`. If no list is provided, it
* defaults to all trainable variables.
*
* ```js
* const a = tf.variable(tf.tensor1d([3, 4]));
* const b = tf.variable(tf.tensor1d([5, 6]));
* const x = tf.tensor1d([1, 2]);
*
* // f(a, b) = a * x ^ 2 + b * x
* const f = () => a.mul(x.square()).add(b.mul(x)).sum();
* // df/da = x ^ 2, df/db = x
* const {value, grads} = tf.variableGrads(f);
*
* Object.keys(grads).forEach(varName => grads[varName].print());
* ```
*
* @param f The function to execute. f() should return a scalar.
* @param varList The list of variables to compute the gradients with respect
* to. Defaults to all trainable variables.
* @returns An object with the following keys and values:
* - `value`: The value of the function `f`.
* - `grads`: A map from the names of the variables to the gradients.
* If the `varList` argument is provided explicitly and contains a subset of
* non-trainable variables, this map in the return value will contain keys
* that map the names of the non-trainable variables to `null`.
*
* @doc {heading: 'Training', subheading: 'Gradients'}
*/
declare function variableGrads(f: () => Scalar, varList?: Variable[]): {
value: Scalar;
grads: NamedTensorMap;
};
/**
* Overrides the gradient computation of a function `f`.
*
* Takes a function
* `f(...inputs, save) => {value: Tensor, gradFunc: (dy, saved) => Tensor[]}`
* and returns another function `g(...inputs)` which takes the same inputs as
* `f`. When called, `g` returns `f().value`. In backward mode, custom gradients
* with respect to each input of `f` are computed using `f().gradFunc`.
*
* The `save` function passed to `f` should be used for saving tensors needed
* in the gradient. And the `saved` passed to the `gradFunc` is a
* `NamedTensorMap`, which contains those saved tensors.
*
* ```js
* const customOp = tf.customGrad((x, save) => {
* // Save x to make sure it's available later for the gradient.
* save([x]);
* // Override gradient of our custom x ^ 2 op to be dy * abs(x);
* return {
* value: x.square(),
* // Note `saved.x` which points to the `x` we saved earlier.
* gradFunc: (dy, saved) => [dy.mul(saved[0].abs())]
* };
* });
*
* const x = tf.tensor1d([-1, -2, 3]);
* const dx = tf.grad(x => customOp(x));
*
* console.log(`f(x):`);
* customOp(x).print();
* console.log(`f'(x):`);
* dx(x).print();
* ```
*
* @param f The function to evaluate in forward mode, which should return
* `{value: Tensor, gradFunc: (dy, saved) => Tensor[]}`, where `gradFunc`
* returns the custom gradients of `f` with respect to its inputs.
*
* @doc {heading: 'Training', subheading: 'Gradients'}
*/
declare function customGrad<T extends Tensor>(f: CustomGradientFunc<T>): (...args: Tensor[]) => T;
export { customGrad, variableGrads, valueAndGrad, valueAndGrads, grad, grads, };