UNPKG

@tensorflow-models/mobilenet

Version:

Pretrained MobileNet in TensorFlow.js

291 lines 13.6 kB
"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); exports.load = exports.version = void 0; var tfconv = require("@tensorflow/tfjs-converter"); var tf = require("@tensorflow/tfjs-core"); var imagenet_classes_1 = require("./imagenet_classes"); var version_1 = require("./version"); Object.defineProperty(exports, "version", { enumerable: true, get: function () { return version_1.version; } }); var IMAGE_SIZE = 224; var EMBEDDING_NODES = { '1.00': 'module_apply_default/MobilenetV1/Logits/global_pool', '2.00': 'module_apply_default/MobilenetV2/Logits/AvgPool' }; var MODEL_INFO = { '1.00': { '0.25': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v1_025_224/classification/1', inputRange: [0, 1] }, '0.50': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/classification/1', inputRange: [0, 1] }, '0.75': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v1_075_224/classification/1', inputRange: [0, 1] }, '1.00': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/classification/1', inputRange: [0, 1] } }, '2.00': { '0.50': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v2_050_224/classification/2', inputRange: [0, 1] }, '0.75': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v2_075_224/classification/2', inputRange: [0, 1] }, '1.00': { url: 'https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/2', inputRange: [0, 1] } } }; // See ModelConfig documentation for expectations of provided fields. function load(modelConfig) { if (modelConfig === void 0) { modelConfig = { version: 1, alpha: 1.0 }; } return __awaiter(this, void 0, void 0, function () { var versionStr, alphaStr, inputMin, inputMax, mobilenet; var _a, _b; return __generator(this, function (_c) { switch (_c.label) { case 0: if (tf == null) { throw new Error("Cannot find TensorFlow.js. If you are using a <script> tag, please " + "also include @tensorflow/tfjs on the page before using this model."); } versionStr = modelConfig.version.toFixed(2); alphaStr = modelConfig.alpha ? modelConfig.alpha.toFixed(2) : ''; inputMin = -1; inputMax = 1; // User provides versionStr / alphaStr. if (modelConfig.modelUrl == null) { if (!(versionStr in MODEL_INFO)) { throw new Error("Invalid version of MobileNet. Valid versions are: " + ("" + Object.keys(MODEL_INFO))); } if (!(alphaStr in MODEL_INFO[versionStr])) { throw new Error("MobileNet constructed with invalid alpha " + modelConfig.alpha + ". Valid " + "multipliers for this version are: " + (Object.keys(MODEL_INFO[versionStr]) + ".")); } _a = MODEL_INFO[versionStr][alphaStr].inputRange, inputMin = _a[0], inputMax = _a[1]; } // User provides modelUrl & optional<inputRange>. if (modelConfig.inputRange != null) { _b = modelConfig.inputRange, inputMin = _b[0], inputMax = _b[1]; } mobilenet = new MobileNetImpl(versionStr, alphaStr, modelConfig.modelUrl, inputMin, inputMax); return [4 /*yield*/, mobilenet.load()]; case 1: _c.sent(); return [2 /*return*/, mobilenet]; } }); }); } exports.load = load; var MobileNetImpl = /** @class */ (function () { function MobileNetImpl(version, alpha, modelUrl, inputMin, inputMax) { if (inputMin === void 0) { inputMin = -1; } if (inputMax === void 0) { inputMax = 1; } this.version = version; this.alpha = alpha; this.modelUrl = modelUrl; this.inputMin = inputMin; this.inputMax = inputMax; this.normalizationConstant = (inputMax - inputMin) / 255.0; } MobileNetImpl.prototype.load = function () { return __awaiter(this, void 0, void 0, function () { var _a, url, _b, result; var _this = this; return __generator(this, function (_c) { switch (_c.label) { case 0: if (!this.modelUrl) return [3 /*break*/, 2]; _a = this; return [4 /*yield*/, tfconv.loadGraphModel(this.modelUrl)]; case 1: _a.model = _c.sent(); return [3 /*break*/, 4]; case 2: url = MODEL_INFO[this.version][this.alpha].url; _b = this; return [4 /*yield*/, tfconv.loadGraphModel(url, { fromTFHub: true })]; case 3: _b.model = _c.sent(); _c.label = 4; case 4: result = tf.tidy(function () { return _this.model.predict(tf.zeros([1, IMAGE_SIZE, IMAGE_SIZE, 3])); }); return [4 /*yield*/, result.data()]; case 5: _c.sent(); result.dispose(); return [2 /*return*/]; } }); }); }; /** * Computes the logits (or the embedding) for the provided image. * * @param img The image to classify. Can be a tensor or a DOM element image, * video, or canvas. * @param embedding If true, it returns the embedding. Otherwise it returns * the 1000-dim logits. */ MobileNetImpl.prototype.infer = function (img, embedding) { var _this = this; if (embedding === void 0) { embedding = false; } return tf.tidy(function () { if (!(img instanceof tf.Tensor)) { img = tf.browser.fromPixels(img); } // Normalize the image from [0, 255] to [inputMin, inputMax]. var normalized = tf.add(tf.mul(tf.cast(img, 'float32'), _this.normalizationConstant), _this.inputMin); // Resize the image to var resized = normalized; if (img.shape[0] !== IMAGE_SIZE || img.shape[1] !== IMAGE_SIZE) { var alignCorners = true; resized = tf.image.resizeBilinear(normalized, [IMAGE_SIZE, IMAGE_SIZE], alignCorners); } // Reshape so we can pass it to predict. var batched = tf.reshape(resized, [-1, IMAGE_SIZE, IMAGE_SIZE, 3]); var result; if (embedding) { var embeddingName = EMBEDDING_NODES[_this.version]; var internal = _this.model.execute(batched, embeddingName); result = tf.squeeze(internal, [1, 2]); } else { var logits1001 = _this.model.predict(batched); // Remove the very first logit (background noise). result = tf.slice(logits1001, [0, 1], [-1, 1000]); } return result; }); }; /** * Classifies an image from the 1000 ImageNet classes returning a map of * the most likely class names to their probability. * * @param img The image to classify. Can be a tensor or a DOM element image, * video, or canvas. * @param topk How many top values to use. Defaults to 3. */ MobileNetImpl.prototype.classify = function (img, topk) { if (topk === void 0) { topk = 3; } return __awaiter(this, void 0, void 0, function () { var logits, classes; return __generator(this, function (_a) { switch (_a.label) { case 0: logits = this.infer(img); return [4 /*yield*/, getTopKClasses(logits, topk)]; case 1: classes = _a.sent(); logits.dispose(); return [2 /*return*/, classes]; } }); }); }; return MobileNetImpl; }()); function getTopKClasses(logits, topK) { return __awaiter(this, void 0, void 0, function () { var softmax, values, valuesAndIndices, i, topkValues, topkIndices, i, topClassesAndProbs, i; return __generator(this, function (_a) { switch (_a.label) { case 0: softmax = tf.softmax(logits); return [4 /*yield*/, softmax.data()]; case 1: values = _a.sent(); softmax.dispose(); valuesAndIndices = []; for (i = 0; i < values.length; i++) { valuesAndIndices.push({ value: values[i], index: i }); } valuesAndIndices.sort(function (a, b) { return b.value - a.value; }); topkValues = new Float32Array(topK); topkIndices = new Int32Array(topK); for (i = 0; i < topK; i++) { topkValues[i] = valuesAndIndices[i].value; topkIndices[i] = valuesAndIndices[i].index; } topClassesAndProbs = []; for (i = 0; i < topkIndices.length; i++) { topClassesAndProbs.push({ className: imagenet_classes_1.IMAGENET_CLASSES[topkIndices[i]], probability: topkValues[i] }); } return [2 /*return*/, topClassesAndProbs]; } }); }); } //# sourceMappingURL=index.js.map