UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

252 lines 12.3 kB
"use strict"; /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (g && (g = 0, op[0] && (_ = 0)), _) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); exports.ObjectDetection = exports.load = exports.version = void 0; var tfconv = require("@tensorflow/tfjs-converter"); var tf = require("@tensorflow/tfjs-core"); var classes_1 = require("./classes"); var BASE_PATH = 'https://storage.googleapis.com/tfjs-models/savedmodel/'; var version_1 = require("./version"); Object.defineProperty(exports, "version", { enumerable: true, get: function () { return version_1.version; } }); function load(config) { if (config === void 0) { config = {}; } return __awaiter(this, void 0, void 0, function () { var base, modelUrl, objectDetection; return __generator(this, function (_a) { switch (_a.label) { case 0: if (tf == null) { throw new Error("Cannot find TensorFlow.js. If you are using a <script> tag, please " + "also include @tensorflow/tfjs on the page before using this model."); } base = config.base || 'lite_mobilenet_v2'; modelUrl = config.modelUrl; if (['mobilenet_v1', 'mobilenet_v2', 'lite_mobilenet_v2'].indexOf(base) === -1) { throw new Error("ObjectDetection constructed with invalid base model " + "".concat(base, ". Valid names are 'mobilenet_v1',") + " 'mobilenet_v2' and 'lite_mobilenet_v2'."); } objectDetection = new ObjectDetection(base, modelUrl); return [4 /*yield*/, objectDetection.load()]; case 1: _a.sent(); return [2 /*return*/, objectDetection]; } }); }); } exports.load = load; var ObjectDetection = /** @class */ (function () { function ObjectDetection(base, modelUrl) { this.modelPath = modelUrl || "".concat(BASE_PATH).concat(this.getPrefix(base), "/model.json"); } ObjectDetection.prototype.getPrefix = function (base) { return base === 'lite_mobilenet_v2' ? "ssd".concat(base) : "ssd_".concat(base); }; ObjectDetection.prototype.load = function () { return __awaiter(this, void 0, void 0, function () { var _a, zeroTensor, result; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = this; return [4 /*yield*/, tfconv.loadGraphModel(this.modelPath)]; case 1: _a.model = _b.sent(); zeroTensor = tf.zeros([1, 300, 300, 3], 'int32'); return [4 /*yield*/, this.model.executeAsync(zeroTensor)]; case 2: result = _b.sent(); return [4 /*yield*/, Promise.all(result.map(function (t) { return t.data(); }))]; case 3: _b.sent(); result.map(function (t) { return t.dispose(); }); zeroTensor.dispose(); return [2 /*return*/]; } }); }); }; /** * Infers through the model. * * @param img The image to classify. Can be a tensor or a DOM element image, * video, or canvas. * @param maxNumBoxes The maximum number of bounding boxes of detected * objects. There can be multiple objects of the same class, but at different * locations. Defaults to 20. * @param minScore The minimum score of the returned bounding boxes * of detected objects. Value between 0 and 1. Defaults to 0.5. */ ObjectDetection.prototype.infer = function (img, maxNumBoxes, minScore) { return __awaiter(this, void 0, void 0, function () { var batched, height, width, result, scores, boxes, _a, maxScores, classes, prevBackend, indexTensor, indexes; return __generator(this, function (_b) { switch (_b.label) { case 0: batched = tf.tidy(function () { if (!(img instanceof tf.Tensor)) { img = tf.browser.fromPixels(img); } // Reshape to a single-element batch so we can pass it to executeAsync. return tf.expandDims(img); }); height = batched.shape[1]; width = batched.shape[2]; return [4 /*yield*/, this.model.executeAsync(batched)]; case 1: result = _b.sent(); scores = result[0].dataSync(); boxes = result[1].dataSync(); // clean the webgl tensors batched.dispose(); tf.dispose(result); _a = this.calculateMaxScores(scores, result[0].shape[1], result[0].shape[2]), maxScores = _a[0], classes = _a[1]; prevBackend = tf.getBackend(); // run post process in cpu if (tf.getBackend() === 'webgl') { tf.setBackend('cpu'); } indexTensor = tf.tidy(function () { var boxes2 = tf.tensor2d(boxes, [result[1].shape[1], result[1].shape[3]]); return tf.image.nonMaxSuppression(boxes2, maxScores, maxNumBoxes, minScore, minScore); }); indexes = indexTensor.dataSync(); indexTensor.dispose(); // restore previous backend if (prevBackend !== tf.getBackend()) { tf.setBackend(prevBackend); } return [2 /*return*/, this.buildDetectedObjects(width, height, boxes, maxScores, indexes, classes)]; } }); }); }; ObjectDetection.prototype.buildDetectedObjects = function (width, height, boxes, scores, indexes, classes) { var count = indexes.length; var objects = []; for (var i = 0; i < count; i++) { var bbox = []; for (var j = 0; j < 4; j++) { bbox[j] = boxes[indexes[i] * 4 + j]; } var minY = bbox[0] * height; var minX = bbox[1] * width; var maxY = bbox[2] * height; var maxX = bbox[3] * width; bbox[0] = minX; bbox[1] = minY; bbox[2] = maxX - minX; bbox[3] = maxY - minY; objects.push({ bbox: bbox, class: classes_1.CLASSES[classes[indexes[i]] + 1].displayName, score: scores[indexes[i]] }); } return objects; }; ObjectDetection.prototype.calculateMaxScores = function (scores, numBoxes, numClasses) { var maxes = []; var classes = []; for (var i = 0; i < numBoxes; i++) { var max = Number.MIN_VALUE; var index = -1; for (var j = 0; j < numClasses; j++) { if (scores[i * numClasses + j] > max) { max = scores[i * numClasses + j]; index = j; } } maxes[i] = max; classes[i] = index; } return [maxes, classes]; }; /** * Detect objects for an image returning a list of bounding boxes with * assocated class and score. * * @param img The image to detect objects from. Can be a tensor or a DOM * element image, video, or canvas. * @param maxNumBoxes The maximum number of bounding boxes of detected * objects. There can be multiple objects of the same class, but at different * locations. Defaults to 20. * @param minScore The minimum score of the returned bounding boxes * of detected objects. Value between 0 and 1. Defaults to 0.5. */ ObjectDetection.prototype.detect = function (img, maxNumBoxes, minScore) { if (maxNumBoxes === void 0) { maxNumBoxes = 20; } if (minScore === void 0) { minScore = 0.5; } return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, this.infer(img, maxNumBoxes, minScore)]; }); }); }; /** * Dispose the tensors allocated by the model. You should call this when you * are done with the model. */ ObjectDetection.prototype.dispose = function () { if (this.model != null) { this.model.dispose(); } }; return ObjectDetection; }()); exports.ObjectDetection = ObjectDetection; //# sourceMappingURL=index.js.map