UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

214 lines 10.1 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var __read = (this && this.__read) || function (o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; }; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("@tensorflow/tfjs"); var classes_1 = require("./classes"); var BASE_PATH = 'https://storage.googleapis.com/tfjs-models/savedmodel/'; var version_1 = require("./version"); exports.version = version_1.version; function load(base) { if (base === void 0) { base = 'lite_mobilenet_v2'; } return __awaiter(this, void 0, void 0, function () { var objectDetection; return __generator(this, function (_a) { switch (_a.label) { case 0: if (tf == null) { throw new Error("Cannot find TensorFlow.js. If you are using a <script> tag, please " + "also include @tensorflow/tfjs on the page before using this model."); } if (['mobilenet_v1', 'mobilenet_v2', 'lite_mobilenet_v2'].indexOf(base) === -1) { throw new Error("ObjectDetection constructed with invalid base model " + (base + ". Valid names are 'mobilenet_v1',") + " 'mobilenet_v2' and 'lite_mobilenet_v2'."); } objectDetection = new ObjectDetection(base); return [4, objectDetection.load()]; case 1: _a.sent(); return [2, objectDetection]; } }); }); } exports.load = load; var ObjectDetection = (function () { function ObjectDetection(base) { this.modelPath = "" + BASE_PATH + this.getPrefix(base) + "/model.json"; } ObjectDetection.prototype.getPrefix = function (base) { return base === 'lite_mobilenet_v2' ? "ssd" + base : "ssd_" + base; }; ObjectDetection.prototype.load = function () { return __awaiter(this, void 0, void 0, function () { var _a, result; var _this = this; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = this; return [4, tf.loadGraphModel(this.modelPath)]; case 1: _a.model = _b.sent(); return [4, this.model.executeAsync(tf.zeros([1, 300, 300, 3]))]; case 2: result = _b.sent(); result.map(function (t) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4, t.data()]; case 1: return [2, _a.sent()]; } }); }); }); result.map(function (t) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { return [2, t.dispose()]; }); }); }); return [2]; } }); }); }; ObjectDetection.prototype.infer = function (img, maxNumBoxes) { return __awaiter(this, void 0, void 0, function () { var batched, height, width, result, scores, boxes, _a, maxScores, classes, prevBackend, indexTensor, indexes; return __generator(this, function (_b) { switch (_b.label) { case 0: batched = tf.tidy(function () { if (!(img instanceof tf.Tensor)) { img = tf.browser.fromPixels(img); } return img.expandDims(0); }); height = batched.shape[1]; width = batched.shape[2]; return [4, this.model.executeAsync(batched)]; case 1: result = _b.sent(); scores = result[0].dataSync(); boxes = result[1].dataSync(); batched.dispose(); tf.dispose(result); _a = __read(this.calculateMaxScores(scores, result[0].shape[1], result[0].shape[2]), 2), maxScores = _a[0], classes = _a[1]; prevBackend = tf.getBackend(); tf.setBackend('cpu'); indexTensor = tf.tidy(function () { var boxes2 = tf.tensor2d(boxes, [result[1].shape[1], result[1].shape[3]]); return tf.image.nonMaxSuppression(boxes2, maxScores, maxNumBoxes, 0.5, 0.5); }); indexes = indexTensor.dataSync(); indexTensor.dispose(); tf.setBackend(prevBackend); return [2, this.buildDetectedObjects(width, height, boxes, maxScores, indexes, classes)]; } }); }); }; ObjectDetection.prototype.buildDetectedObjects = function (width, height, boxes, scores, indexes, classes) { var count = indexes.length; var objects = []; for (var i = 0; i < count; i++) { var bbox = []; for (var j = 0; j < 4; j++) { bbox[j] = boxes[indexes[i] * 4 + j]; } var minY = bbox[0] * height; var minX = bbox[1] * width; var maxY = bbox[2] * height; var maxX = bbox[3] * width; bbox[0] = minX; bbox[1] = minY; bbox[2] = maxX - minX; bbox[3] = maxY - minY; objects.push({ bbox: bbox, class: classes_1.CLASSES[classes[indexes[i]] + 1].displayName, score: scores[indexes[i]] }); } return objects; }; ObjectDetection.prototype.calculateMaxScores = function (scores, numBoxes, numClasses) { var maxes = []; var classes = []; for (var i = 0; i < numBoxes; i++) { var max = Number.MIN_VALUE; var index = -1; for (var j = 0; j < numClasses; j++) { if (scores[i * numClasses + j] > max) { max = scores[i * numClasses + j]; index = j; } } maxes[i] = max; classes[i] = index; } return [maxes, classes]; }; ObjectDetection.prototype.detect = function (img, maxNumBoxes) { if (maxNumBoxes === void 0) { maxNumBoxes = 20; } return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { return [2, this.infer(img, maxNumBoxes)]; }); }); }; ObjectDetection.prototype.dispose = function () { if (this.model) { this.model.dispose(); } }; return ObjectDetection; }()); exports.ObjectDetection = ObjectDetection; //# sourceMappingURL=index.js.map