UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

161 lines (160 loc) 7.68 kB
/** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ import { DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray } from './types'; /** * Shuffles the array in-place using Fisher-Yates algorithm. * * ```js * const a = [1, 2, 3, 4, 5]; * tf.util.shuffle(a); * console.log(a); * ``` * * @param array The array to shuffle in-place. */ /** @doc {heading: 'Util'} */ export declare function shuffle(array: any[] | Uint32Array | Int32Array | Float32Array): void; /** Clamps a value to a specified range. */ export declare function clamp(min: number, x: number, max: number): number; export declare function nearestLargerEven(val: number): number; export declare function sum(arr: number[]): number; /** * Returns a sample from a uniform [a, b) distribution. * * @param a The minimum support (inclusive). * @param b The maximum support (exclusive). * @return A pseudorandom number on the half-open interval [a,b). */ export declare function randUniform(a: number, b: number): number; /** Returns the squared Euclidean distance between two vectors. */ export declare function distSquared(a: FlatVector, b: FlatVector): number; /** * Asserts that the expression is true. Otherwise throws an error with the * provided message. * * ```js * tf.util.assert(2 === 3, 'Two is not three'); * ``` * * @param expr The expression to assert (as a boolean). * @param msg The message to report when throwing an error. Can be either a * string, or a function that returns a string (for performance reasons). */ /** @doc {heading: 'Util'} */ export declare function assert(expr: boolean, msg: string | (() => string)): void; export declare function assertShapesMatch(shapeA: number[], shapeB: number[], errorMessagePrefix?: string): void; export declare function assertNonNull(a: TensorLike): void; /** * Flattens an arbitrarily nested array. * * ```js * const a = [[1, 2], [3, 4], [5, [6, [7]]]]; * const flat = tf.util.flatten(a); * console.log(flat); * ``` * * @param arr The nested array to flatten. * @param result The destination array which holds the elements. */ /** @doc {heading: 'Util'} */ export declare function flatten<T extends number | boolean | string | Promise<number> | TypedArray>(arr: T | RecursiveArray<T>, result?: T[]): T[]; /** * Returns the size (number of elements) of the tensor given its shape. * * ```js * const shape = [3, 4, 2]; * const size = tf.util.sizeFromShape(shape); * console.log(size); * ``` */ /** @doc {heading: 'Util'} */ export declare function sizeFromShape(shape: number[]): number; export declare function isScalarShape(shape: number[]): boolean; export declare function arraysEqual(n1: FlatVector, n2: FlatVector): boolean; export declare function isInt(a: number): boolean; export declare function tanh(x: number): number; export declare function sizeToSquarishShape(size: number): [number, number]; export declare function createShuffledIndices(n: number): Uint32Array; export declare function rightPad(a: string, size: number): string; export declare function repeatedTry(checkFn: () => boolean, delayFn?: (counter: number) => number, maxCounter?: number): Promise<void>; /** * Given the full size of the array and a shape that may contain -1 as the * implicit dimension, returns the inferred shape where -1 is replaced. * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3]. * * @param shape The shape, which may contain -1 in some dimension. * @param size The full size (number of elements) of the array. * @return The inferred shape where -1 is replaced with the inferred size. */ export declare function inferFromImplicitShape(shape: number[], size: number): number[]; export declare function parseAxisParam(axis: number | number[], shape: number[]): number[]; /** Reduces the shape by removing all dimensions of shape 1. */ export declare function squeezeShape(shape: number[], axis?: number[]): { newShape: number[]; keptDims: number[]; }; export declare function getTypedArrayFromDType<D extends NumericDataType>(dtype: D, size: number): DataTypeMap[D]; export declare function getArrayFromDType<D extends DataType>(dtype: D, size: number): DataTypeMap[D]; export declare function checkComputationForErrors<D extends DataType>(vals: DataTypeMap[D], dtype: D, name: string): void; export declare function checkConversionForErrors<D extends DataType>(vals: DataTypeMap[D] | number[], dtype: D): void; /** * Returns true if the new type can't encode the old type without loss of * precision. */ export declare function hasEncodingLoss(oldType: DataType, newType: DataType): boolean; export declare function isTypedArray(a: {}): a is Float32Array | Int32Array | Uint8Array; export declare function bytesPerElement(dtype: DataType): number; /** * Returns the approximate number of bytes allocated in the string array - 2 * bytes per character. Computing the exact bytes for a native string in JS is * not possible since it depends on the encoding of the html page that serves * the website. */ export declare function bytesFromStringArray(arr: string[]): number; /** Returns true if the value is a string. */ export declare function isString(value: {}): value is string; export declare function isBoolean(value: {}): boolean; export declare function isNumber(value: {}): boolean; export declare function inferDtype(values: TensorLike): DataType; export declare function isFunction(f: Function): boolean; export declare function nearestDivisor(size: number, start: number): number; export declare function computeStrides(shape: number[]): number[]; export declare function toTypedArray(a: TensorLike, dtype: DataType, debugMode: boolean): TypedArray; export declare function toNestedArray(shape: number[], a: TypedArray): number | any[]; export declare function makeOnesTypedArray<D extends DataType>(size: number, dtype: D): DataTypeMap[D]; export declare function makeZerosTypedArray<D extends DataType>(size: number, dtype: D): DataTypeMap[D]; /** * Returns the current high-resolution time in milliseconds relative to an * arbitrary time in the past. It works across different platforms (node.js, * browsers). * * ```js * console.log(tf.util.now()); * ``` */ /** @doc {heading: 'Util'} */ export declare function now(): number; /** * Monitor Promise.all progress, fire onProgress callback function. * * @param promises Promise list going to be monitored * @param onProgress Callback function. Fired when a promise resolved. * @param startFraction Optional fraction start. Default to 0. * @param endFraction Optional fraction end. Default to 1. */ export declare function monitorPromisesProgress(promises: Array<Promise<{} | void>>, onProgress: Function, startFraction?: number, endFraction?: number): Promise<{}[]>; export declare function assertNonNegativeIntegerDimensions(shape: number[]): void;