UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

330 lines 14.2 kB
"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("./index"); var jasmine_util_1 = require("./jasmine_util"); var test_util_1 = require("./test_util"); jasmine_util_1.describeWithFlags('time webgl', test_util_1.WEBGL_ENVS, function () { it('upload + compute', function () { return __awaiter(_this, void 0, void 0, function () { var a, time; return __generator(this, function (_a) { switch (_a.label) { case 0: a = tf.zeros([10, 10]); return [4 /*yield*/, tf.time(function () { return a.square(); })]; case 1: time = _a.sent(); expect(time.uploadWaitMs > 0); expect(time.downloadWaitMs === 0); expect(time.kernelMs > 0); expect(time.wallMs >= time.kernelMs); return [2 /*return*/]; } }); }); }); it('upload + compute + dataSync', function () { return __awaiter(_this, void 0, void 0, function () { var a, time; return __generator(this, function (_a) { switch (_a.label) { case 0: a = tf.zeros([10, 10]); return [4 /*yield*/, tf.time(function () { return a.square().dataSync(); })]; case 1: time = _a.sent(); expect(time.uploadWaitMs > 0); expect(time.downloadWaitMs > 0); expect(time.kernelMs > 0); expect(time.wallMs >= time.kernelMs); return [2 /*return*/]; } }); }); }); it('upload + compute + data', function () { return __awaiter(_this, void 0, void 0, function () { var a, time; var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: a = tf.zeros([10, 10]); return [4 /*yield*/, tf.time(function () { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, a.square().data()]; case 1: return [2 /*return*/, _a.sent()]; } }); }); })]; case 1: time = _a.sent(); expect(time.uploadWaitMs > 0); expect(time.downloadWaitMs > 0); expect(time.kernelMs > 0); expect(time.wallMs >= time.kernelMs); return [2 /*return*/]; } }); }); }); it('preupload (not included) + compute + data', function () { return __awaiter(_this, void 0, void 0, function () { var a, time; return __generator(this, function (_a) { switch (_a.label) { case 0: a = tf.zeros([10, 10]); // Pre-upload a on gpu. a.square(); return [4 /*yield*/, tf.time(function () { return a.sqrt(); })]; case 1: time = _a.sent(); // The tensor was already on gpu. expect(time.uploadWaitMs === 0); expect(time.downloadWaitMs === 0); expect(time.kernelMs > 0); expect(time.wallMs >= time.kernelMs); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('time cpu', test_util_1.NODE_ENVS, function () { it('simple upload', function () { return __awaiter(_this, void 0, void 0, function () { var a, time; return __generator(this, function (_a) { switch (_a.label) { case 0: a = tf.zeros([10, 10]); return [4 /*yield*/, tf.time(function () { return a.square(); })]; case 1: time = _a.sent(); expect(time.kernelMs > 0); expect(time.wallMs >= time.kernelMs); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('tidy', test_util_1.ALL_ENVS, function () { it('returns Tensor', function () { tf.tidy(function () { var a = tf.tensor1d([1, 2, 3]); var b = tf.tensor1d([0, 0, 0]); expect(tf.memory().numTensors).toBe(2); tf.tidy(function () { var result = tf.tidy(function () { b = tf.addStrict(a, b); b = tf.addStrict(a, b); b = tf.addStrict(a, b); return tf.add(a, b); }); // result is new. All intermediates should be disposed. expect(tf.memory().numTensors).toBe(2 + 1); test_util_1.expectArraysClose(result, [4, 8, 12]); }); // a, b are still here, result should be disposed. expect(tf.memory().numTensors).toBe(2); }); expect(tf.memory().numTensors).toBe(0); }); it('multiple disposes does not affect num arrays', function () { expect(tf.memory().numTensors).toBe(0); var a = tf.tensor1d([1, 2, 3]); var b = tf.tensor1d([1, 2, 3]); expect(tf.memory().numTensors).toBe(2); a.dispose(); a.dispose(); expect(tf.memory().numTensors).toBe(1); b.dispose(); expect(tf.memory().numTensors).toBe(0); }); it('allows primitive types', function () { var a = tf.tidy(function () { return 5; }); expect(a).toBe(5); var b = tf.tidy(function () { return 'hello'; }); expect(b).toBe('hello'); }); it('allows complex types', function () { var res = tf.tidy(function () { return { a: tf.scalar(1), b: 'hello', c: [tf.scalar(2), 'world'] }; }); test_util_1.expectArraysClose(res.a, [1]); test_util_1.expectArraysClose(res.c[0], [2]); }); it('returns Tensor[]', function () { var a = tf.tensor1d([1, 2, 3]); var b = tf.tensor1d([0, -1, 1]); expect(tf.memory().numTensors).toBe(2); tf.tidy(function () { var result = tf.tidy(function () { tf.add(a, b); return [tf.add(a, b), tf.sub(a, b)]; }); // the 2 results are new. All intermediates should be disposed. expect(tf.memory().numTensors).toBe(4); test_util_1.expectArraysClose(result[0], [1, 1, 4]); test_util_1.expectArraysClose(result[1], [1, 3, 2]); expect(tf.memory().numTensors).toBe(4); }); // the 2 results should be disposed. expect(tf.memory().numTensors).toBe(2); a.dispose(); b.dispose(); expect(tf.memory().numTensors).toBe(0); }); it('basic usage without return', function () { var a = tf.tensor1d([1, 2, 3]); var b = tf.tensor1d([0, 0, 0]); expect(tf.memory().numTensors).toBe(2); tf.tidy(function () { b = tf.addStrict(a, b); b = tf.addStrict(a, b); b = tf.addStrict(a, b); tf.add(a, b); }); // all intermediates should be disposed. expect(tf.memory().numTensors).toBe(2); }); it('nested usage', function () { var a = tf.tensor1d([1, 2, 3]); var b = tf.tensor1d([0, 0, 0]); expect(tf.memory().numTensors).toBe(2); tf.tidy(function () { var result = tf.tidy(function () { b = tf.addStrict(a, b); b = tf.tidy(function () { b = tf.tidy(function () { return tf.addStrict(a, b); }); // original a, b, and two intermediates. expect(tf.memory().numTensors).toBe(4); tf.tidy(function () { tf.addStrict(a, b); }); // All the intermediates should be cleaned up. expect(tf.memory().numTensors).toBe(4); return tf.addStrict(a, b); }); expect(tf.memory().numTensors).toBe(4); return tf.addStrict(a, b); }); expect(tf.memory().numTensors).toBe(3); test_util_1.expectArraysClose(result, [4, 8, 12]); }); expect(tf.memory().numTensors).toBe(2); }); it('nested usage returns tensor created from outside scope', function () { var x = tf.scalar(1); tf.tidy(function () { tf.tidy(function () { return x; }); }); expect(x.isDisposed).toBe(false); }); it('nested usage with keep works', function () { var b; tf.tidy(function () { var a = tf.scalar(1); tf.tidy(function () { b = tf.keep(a); }); }); expect(b.isDisposed).toBe(false); b.dispose(); }); it('single argument', function () { var hasRan = false; tf.tidy(function () { hasRan = true; }); expect(hasRan).toBe(true); }); it('single argument, but not a function throws error', function () { expect(function () { tf.tidy('asdf'); }).toThrowError(); }); it('2 arguments, first is string', function () { var hasRan = false; tf.tidy('name', function () { hasRan = true; }); expect(hasRan).toBe(true); }); it('2 arguments, but first is not string throws error', function () { expect(function () { // tslint:disable-next-line:no-any tf.tidy(4, function () { }); }).toThrowError(); }); it('2 arguments, but second is not a function throws error', function () { expect(function () { // tslint:disable-next-line:no-any tf.tidy('name', 'another name'); }).toThrowError(); }); it('works with arbitrary depth of result', function () { tf.tidy(function () { var res = tf.tidy(function () { return [tf.scalar(1), [[tf.scalar(2)]], { list: [tf.scalar(3)] }]; }); test_util_1.expectArraysEqual(res[0], [1]); // tslint:disable-next-line:no-any test_util_1.expectArraysEqual(res[1][0][0], [2]); // tslint:disable-next-line:no-any test_util_1.expectArraysEqual(res[2].list[0], [3]); expect(tf.memory().numTensors).toBe(3); return res[0]; }); // Everything but scalar(1) got disposed. expect(tf.memory().numTensors).toBe(1); }); }); //# sourceMappingURL=tracking_test.js.map