@tensorflow-models/coco-ssd
Version:
Object detection model (coco-ssd) in TensorFlow.js
642 lines (641 loc) • 35.5 kB
TypeScript
/**
* @license
* Copyright 2017 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import { ArrayMap, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TensorLike, TensorLike1D, TensorLike3D, TensorLike4D, TypedArray } from './types';
export interface TensorData<D extends DataType> {
dataId?: DataId;
values?: DataTypeMap[D];
}
export interface Backend {
read(dataId: object): Promise<DataValues>;
readSync(dataId: object): DataValues;
disposeData(dataId: object): void;
write(dataId: object, values: DataValues): void;
}
/**
* A mutable object, similar to `tf.Tensor`, that allows users to set values
* at locations before converting to an immutable `tf.Tensor`.
*
* See `tf.buffer` for creating a tensor buffer.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
export declare class TensorBuffer<R extends Rank, D extends DataType = 'float32'> {
dtype: D;
size: number;
shape: ShapeMap[R];
strides: number[];
values: DataTypeMap[D];
constructor(shape: ShapeMap[R], dtype: D, values?: DataTypeMap[D]);
/**
* Sets a value in the buffer at a given location.
*
* @param value The value to set.
* @param locs The location indices.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
set(value: SingleValueMap[D], ...locs: number[]): void;
/**
* Returns the value in the buffer at the provided location.
*
* @param locs The location indices.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
get(...locs: number[]): SingleValueMap[D];
locToIndex(locs: number[]): number;
indexToLoc(index: number): number[];
readonly rank: number;
/**
* Creates an immutable `tf.Tensor` object from the buffer.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
toTensor(): Tensor<R>;
}
export interface TensorTracker {
registerTensor(t: Tensor, backend?: Backend): void;
disposeTensor(t: Tensor): void;
write(dataId: DataId, values: DataValues): void;
read(dataId: DataId): Promise<DataValues>;
readSync(dataId: DataId): DataValues;
registerVariable(v: Variable): void;
nextTensorId(): number;
nextVariableId(): number;
}
/**
* The Tensor class calls into this handler to delegate chaining operations.
*/
export interface OpHandler {
cast<T extends Tensor>(x: T, dtype: DataType): T;
buffer<R extends Rank, D extends DataType>(shape: ShapeMap[R], dtype: D, values?: DataTypeMap[D]): TensorBuffer<R, D>;
print<T extends Tensor>(x: T, verbose: boolean): void;
reshape<R2 extends Rank>(x: Tensor, shape: ShapeMap[R2]): Tensor<R2>;
expandDims<R2 extends Rank>(x: Tensor, axis: number): Tensor<R2>;
cumsum<T extends Tensor>(x: Tensor, axis: number, exclusive: boolean, reverse: boolean): T;
squeeze<T extends Tensor>(x: Tensor, axis?: number[]): T;
clone<T extends Tensor>(x: T): T;
oneHot(x: Tensor | TensorLike, depth: number, onValue?: number, offValue?: number): Tensor;
tile<T extends Tensor>(x: T, reps: number[]): T;
gather<T extends Tensor>(x: T, indices: Tensor | TensorLike, axis: number): T;
matMul<T extends Tensor>(a: T, b: T | TensorLike, transposeA: boolean, transposeB: boolean): T;
dot(t1: Tensor, t2: Tensor | TensorLike): Tensor;
norm(x: Tensor, ord: number | 'euclidean' | 'fro', axis: number | number[], keepDims: boolean): Tensor;
slice<R extends Rank, T extends Tensor<R>>(x: T, begin: number | number[], size?: number | number[]): T;
split<T extends Tensor>(x: T, numOrSizeSplits: number[] | number, axis?: number): T[];
reverse<T extends Tensor>(x: T, axis?: number | number[]): T;
concat<T extends Tensor>(tensors: Array<T | TensorLike>, axis: number): T;
stack<T extends Tensor>(tensors: Array<T | TensorLike>, axis: number): Tensor;
unstack<T extends Tensor>(value: T, axis: number): Tensor[];
pad<T extends Tensor>(x: T, paddings: Array<[number, number]>, constantValue: number): T;
batchNorm<R extends Rank>(x: Tensor<R>, mean: Tensor<R> | Tensor1D | TensorLike, variance: Tensor<R> | Tensor1D | TensorLike, offset?: Tensor<R> | Tensor1D | TensorLike, scale?: Tensor<R> | Tensor1D | TensorLike, varianceEpsilon?: number): Tensor<R>;
all<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
any<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
logSumExp<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
sum<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
prod<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
mean<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
min<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
max<T extends Tensor>(x: Tensor, axis: number | number[], keepDims: boolean): T;
argMin<T extends Tensor>(x: Tensor, axis: number): T;
argMax<T extends Tensor>(x: Tensor, axis: number): T;
add<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
addStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
atan2<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
sub<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
subStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
pow<T extends Tensor>(base: T, exp: Tensor | TensorLike): T;
powStrict<T extends Tensor>(base: T, exp: Tensor | TensorLike): T;
mul<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
mulStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
div<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
floorDiv<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
divStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
mod<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
modStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
minimum<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
minimumStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
maximum<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
maximumStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
squaredDifference<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
squaredDifferenceStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
transpose<T extends Tensor>(x: T, perm?: number[]): T;
logicalNot<T extends Tensor>(x: T): T;
logicalAnd<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
logicalOr<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
logicalXor<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
where<T extends Tensor>(condition: Tensor | TensorLike, a: T, b: T | TensorLike): T;
notEqual<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
notEqualStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
less<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
lessStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
equal<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
equalStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
lessEqual<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
lessEqualStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
greater<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
greaterStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
greaterEqual<T extends Tensor>(a: Tensor, b: Tensor | TensorLike): T;
greaterEqualStrict<T extends Tensor>(a: T, b: T | TensorLike): T;
neg<T extends Tensor>(x: T): T;
ceil<T extends Tensor>(x: T): T;
floor<T extends Tensor>(x: T): T;
sign<T extends Tensor>(x: T): T;
round<T extends Tensor>(x: T): T;
exp<T extends Tensor>(x: T): T;
expm1<T extends Tensor>(x: T): T;
log<T extends Tensor>(x: T): T;
log1p<T extends Tensor>(x: T): T;
sqrt<T extends Tensor>(x: T): T;
rsqrt<T extends Tensor>(x: T): T;
square<T extends Tensor>(x: T): T;
reciprocal<T extends Tensor>(x: T): T;
abs<T extends Tensor>(x: T): T;
clipByValue<T extends Tensor>(x: T, clipValueMin: number, clipValueMax: number): T;
sigmoid<T extends Tensor>(x: T): T;
logSigmoid<T extends Tensor>(x: T): T;
softplus<T extends Tensor>(x: T): T;
zerosLike<T extends Tensor>(x: T): T;
onesLike<T extends Tensor>(x: T): T;
sin<T extends Tensor>(x: T): T;
cos<T extends Tensor>(x: T): T;
tan<T extends Tensor>(x: T): T;
asin<T extends Tensor>(x: T): T;
acos<T extends Tensor>(x: T): T;
atan<T extends Tensor>(x: T): T;
sinh<T extends Tensor>(x: T): T;
cosh<T extends Tensor>(x: T): T;
tanh<T extends Tensor>(x: T): T;
asinh<T extends Tensor>(x: T): T;
acosh<T extends Tensor>(x: T): T;
atanh<T extends Tensor>(x: T): T;
erf<T extends Tensor>(x: T): T;
step<T extends Tensor>(x: T, alpha: number): T;
relu<T extends Tensor>(x: T): T;
elu<T extends Tensor>(x: T): T;
selu<T extends Tensor>(x: T): T;
leakyRelu<T extends Tensor>(x: T, alpha: number): T;
prelu<T extends Tensor>(x: T, alpha: T | TensorLike): T;
softmax<T extends Tensor>(logits: T, dim: number): T;
logSoftmax<T extends Tensor>(logits: T, axis: number): T;
image: {
resizeBilinear<T extends Tensor3D | Tensor4D>(images: T, size: [number, number], alignCorners: boolean): T;
resizeNearestNeighbor<T extends Tensor3D | Tensor4D>(images: T, size: [number, number], alignCorners: boolean): T;
};
conv1d<T extends Tensor2D | Tensor3D>(x: T, filter: Tensor3D | TensorLike3D, stride: number, pad: 'valid' | 'same' | number, dataFormat: 'NWC' | 'NCW', dilation: number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
conv2d<T extends Tensor3D | Tensor4D>(x: T, filter: Tensor4D | TensorLike4D, strides: [number, number] | number, pad: 'valid' | 'same' | number, dataFormat: 'NHWC' | 'NCHW', dilations: [number, number] | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
conv2dTranspose<T extends Tensor3D | Tensor4D>(x: T, filter: Tensor4D | TensorLike4D, outputShape: [number, number, number, number] | [number, number, number], strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
depthwiseConv2d<T extends Tensor3D | Tensor4D>(x: T, filter: Tensor4D | TensorLike4D, strides: [number, number] | number, pad: 'valid' | 'same' | number, dataFormat: 'NHWC' | 'NCHW', dilations: [number, number] | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
separableConv2d<T extends Tensor3D | Tensor4D>(x: T | TensorLike, depthwiseFilter: Tensor4D | TensorLike4D, pointwiseFilter: Tensor4D | TensorLike, strides: [number, number] | number, pad: 'valid' | 'same', dilation: [number, number] | number, dataFormat: 'NHWC' | 'NCHW'): T;
maxPool<T extends Tensor3D | Tensor4D>(x: T, filterSize: [number, number] | number, strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
avgPool<T extends Tensor3D | Tensor4D>(x: T, filterSize: [number, number] | number, strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
pool<T extends Tensor3D | Tensor4D>(input: T, windowShape: [number, number] | number, poolingType: 'avg' | 'max', padding: 'valid' | 'same' | number, diationRate?: [number, number] | number, strides?: [number, number] | number): T;
localResponseNormalization<T extends Tensor3D | Tensor4D>(x: T, depthRadius: number, bias: number, alpha: number, beta: number): T;
unsortedSegmentSum<T extends Tensor>(x: T, segmentIds: Tensor1D | TensorLike1D, numSegments: number): T;
batchToSpaceND<T extends Tensor>(x: T, blockShape: number[], crops: number[][]): T;
spaceToBatchND<T extends Tensor>(x: T, blockShape: number[], paddings: number[][]): T;
topk<T extends Tensor>(x: T, k: number, sorted: boolean): {
values: T;
indices: T;
};
stridedSlice(x: Tensor, begin: number[], end: number[], strides: number[], beginMask: number, endMask: number, ellipsisMask: number, newAxisMask: number, shrinkAxisMask: number): Tensor;
depthToSpace(x: Tensor4D, blockSize: number, dataFormat: string): Tensor4D;
spectral: {
fft(x: Tensor): Tensor;
ifft(x: Tensor): Tensor;
rfft(x: Tensor): Tensor;
irfft(x: Tensor): Tensor;
};
}
/**
* An external consumer can register itself as the tensor tracker. This way
* the Tensor class can notify the tracker for every tensor created and
* disposed.
*/
export declare function setTensorTracker(fn: () => TensorTracker): void;
/**
* An external consumer can register itself as the op handler. This way the
* Tensor class can have chaining methods that call into ops via the op handler.
*/
export declare function setOpHandler(handler: OpHandler): void;
/**
* Sets the deprecation warning function to be used by this file. This way the
* Tensor class can be a leaf but still use the environment.
*/
export declare function setDeprecationWarningFn(fn: (msg: string) => void): void;
/**
* We wrap data id since we use weak map to avoid memory leaks.
* Since we have our own memory management, we have a reference counter
* mapping a tensor to its data, so there is always a pointer (even if that
* data is otherwise garbage collectable).
* See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
* Global_Objects/WeakMap
*/
export declare type DataId = object;
/**
* A `tf.Tensor` object represents an immutable, multidimensional array of
* numbers that has a shape and a data type.
*
* See `tf.tensor` for details on how to create a `tf.Tensor`.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
export declare class Tensor<R extends Rank = Rank> {
/** Unique id of this tensor. */
readonly id: number;
/**
* Id of the bucket holding the data for this tensor. Multiple arrays can
* point to the same bucket (e.g. when calling array.reshape()).
*/
dataId: DataId;
/** The shape of the tensor. */
readonly shape: ShapeMap[R];
/** Number of elements in the tensor. */
readonly size: number;
/** The data type for the array. */
readonly dtype: DataType;
/** The rank type for the array (see `Rank` enum). */
readonly rankType: R;
/**
* Number of elements to skip in each dimension when indexing. See
* https://docs.scipy.org/doc/numpy/reference/generated/\
* numpy.ndarray.strides.html
*/
readonly strides: number[];
protected constructor(shape: ShapeMap[R], dtype: DataType, values?: DataValues, dataId?: DataId, backend?: Backend);
/**
* Makes a new tensor with the provided shape and values. Values should be in
* a flat array.
*/
static make<T extends Tensor<R>, D extends DataType = 'float32', R extends Rank = Rank>(shape: ShapeMap[R], data: TensorData<D>, dtype?: D, backend?: Backend): T;
/** Flatten a Tensor to a 1D array. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
flatten(): Tensor1D;
/** Converts a size-1 `tf.Tensor` to a `tf.Scalar`. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
asScalar(): Scalar;
/** Converts a `tf.Tensor` to a `tf.Tensor1D`. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
as1D(): Tensor1D;
/**
* Converts a `tf.Tensor` to a `tf.Tensor2D`.
*
* @param rows Number of rows in `tf.Tensor2D`.
* @param columns Number of columns in `tf.Tensor2D`.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
as2D(rows: number, columns: number): Tensor2D;
/**
* Converts a `tf.Tensor` to a `tf.Tensor3D`.
*
* @param rows Number of rows in `tf.Tensor3D`.
* @param columns Number of columns in `tf.Tensor3D`.
* @param depth Depth of `tf.Tensor3D`.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
as3D(rows: number, columns: number, depth: number): Tensor3D;
/**
* Converts a `tf.Tensor` to a `tf.Tensor4D`.
*
* @param rows Number of rows in `tf.Tensor4D`.
* @param columns Number of columns in `tf.Tensor4D`.
* @param depth Depth of `tf.Tensor4D`.
* @param depth2 4th dimension of `tf.Tensor4D`.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
as4D(rows: number, columns: number, depth: number, depth2: number): Tensor4D;
/**
* Converts a `tf.Tensor` to a `tf.Tensor5D`.
*
* @param rows Number of rows in `tf.Tensor5D`.
* @param columns Number of columns in `tf.Tensor5D`.
* @param depth Depth of `tf.Tensor5D`.
* @param depth2 4th dimension of `tf.Tensor5D`.
* @param depth3 5th dimension of 'tf.Tensor5D'
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
as5D(rows: number, columns: number, depth: number, depth2: number, depth3: number): Tensor5D;
/**
* Casts a `tf.Tensor` to a specified dtype.
*
* @param dtype Data-type to cast the tensor to.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
asType<T extends this>(this: T, dtype: DataType): T;
readonly rank: number;
/** Returns a promise of `tf.TensorBuffer` that holds the underlying data. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
buffer<D extends DataType = 'float32'>(): Promise<TensorBuffer<R, D>>;
/** Returns a `tf.TensorBuffer` that holds the underlying data. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
bufferSync<D extends DataType = 'float32'>(): TensorBuffer<R, D>;
/**
* Returns the tensor data as a nested array. The transfer of data is done
* asynchronously.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
array(): Promise<ArrayMap[R]>;
/**
* Returns the tensor data as a nested array. The transfer of data is done
* synchronously.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
arraySync(): ArrayMap[R];
/**
* Asynchronously downloads the values from the `tf.Tensor`. Returns a promise
* of `TypedArray` that resolves when the computation has finished.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
data<D extends DataType = NumericDataType>(): Promise<DataTypeMap[D]>;
/**
* Synchronously downloads the values from the `tf.Tensor`. This blocks the UI
* thread until the values are ready, which can cause performance issues.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
dataSync<D extends DataType = NumericDataType>(): DataTypeMap[D];
/**
* Disposes `tf.Tensor` from memory.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
dispose(): void;
private isDisposedInternal;
readonly isDisposed: boolean;
private throwIfDisposed;
/** Casts the array to type `float32` */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
toFloat<T extends this>(this: T): T;
/** Casts the array to type `int32` */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
toInt(): this;
/** Casts the array to type `bool` */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
toBool(): this;
/**
* Prints the `tf.Tensor`. See `tf.print` for details.
*
* @param verbose Whether to print verbose information about the tensor,
* including dtype and size.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
print(verbose?: boolean): void;
/**
* Reshapes the tensor into the provided shape.
* See `tf.reshape` for more details.
*
* @param newShape An array of integers defining the output tensor shape.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
reshape<R2 extends Rank>(newShape: ShapeMap[R2]): Tensor<R2>;
/**
* Reshapes the tensor into the shape of the provided tensor.
*
* @param x The tensor of required shape.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
reshapeAs<T extends Tensor>(x: T): T;
/**
* Returns a `tf.Tensor` that has expanded rank, by inserting a dimension
* into the tensor's shape. See `tf.expandDims` for details.
*
* @param axis The dimension index at which to insert shape of 1. Defaults to
* 0 (the first dimension).
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
expandDims<R2 extends Rank>(axis?: number): Tensor<R2>;
/**
* Returns the cumulative sum of the `tf.Tensor` along `axis`.
*
* @param axis The axis along which to sum. Optional. Defaults to 0.
* @param exclusive Whether to perform exclusive cumulative sum. Defaults to
* false. If set to true then the sum of each tensor entry does not include
* its own value, but only the values previous to it along the specified
* axis.
* @param reverse Whether to sum in the opposite direction. Defaults to
* false.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
cumsum<T extends Tensor>(axis?: number, exclusive?: boolean, reverse?: boolean): T;
/**
* Returns a `tf.Tensor` with dimensions of size 1 removed from the shape.
* See `tf.squeeze` for more details.
*
* @param axis A list of numbers. If specified, only squeezes the
* dimensions listed. The dimension index starts at 0. It is an error to
* squeeze a dimension that is not 1.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
squeeze<T extends Tensor>(axis?: number[]): T;
/** Returns a copy of the tensor. See `tf.clone` for details. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
clone<T extends Tensor>(this: T): T;
oneHot(this: Tensor, depth: number, onValue?: number, offValue?: number): Tensor;
/** Returns a human-readable description of the tensor. Useful for logging. */
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
toString(verbose?: boolean): string;
tile<T extends this>(this: T, reps: number[]): T;
gather<T extends this>(this: T, indices: Tensor | TensorLike, axis?: number): T;
matMul<T extends Tensor>(this: T, b: T | TensorLike, transposeA?: boolean, transposeB?: boolean): T;
dot(b: Tensor | TensorLike): Tensor;
norm(ord?: number | 'euclidean' | 'fro', axis?: number | number[], keepDims?: boolean): Tensor;
slice<T extends Tensor<R>>(this: T, begin: number | number[], size?: number | number[]): T;
reverse<T extends Tensor>(this: T, axis?: number | number[]): T;
concat<T extends Tensor>(this: T, x: T | Array<T | TensorLike>, axis?: number): T;
split<T extends Tensor>(this: T, numOrSizeSplits: number[] | number, axis?: number): T[];
stack(x: Tensor, axis?: number): Tensor;
unstack(axis?: number): Tensor[];
pad<T extends Tensor>(this: T, paddings: Array<[number, number]>, constantValue?: number): T;
/**
* @deprecated Use `tf.batchNorm` instead, and note the positional argument
* change of scale, offset, and varianceEpsilon.
*/
batchNormalization(mean: Tensor<R> | Tensor1D | TensorLike, variance: Tensor<R> | Tensor1D | TensorLike, varianceEpsilon?: number, scale?: Tensor<R> | Tensor1D | TensorLike, offset?: Tensor<R> | Tensor1D | TensorLike): Tensor<R>;
batchNorm(mean: Tensor<R> | Tensor1D | TensorLike, variance: Tensor<R> | Tensor1D | TensorLike, offset?: Tensor<R> | Tensor1D | TensorLike, scale?: Tensor<R> | Tensor1D | TensorLike, varianceEpsilon?: number): Tensor<R>;
all<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
any<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
logSumExp<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
sum<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
prod<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
mean<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
min<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
max<T extends Tensor>(axis?: number | number[], keepDims?: boolean): T;
argMin<T extends Tensor>(axis?: number): T;
argMax<T extends Tensor>(axis?: number): T;
cast<T extends this>(dtype: DataType): T;
add<T extends Tensor>(x: Tensor | TensorLike): T;
addStrict<T extends this>(this: T, x: T | TensorLike): T;
atan2<T extends this>(this: T, x: T | TensorLike): T;
sub<T extends Tensor>(x: Tensor | TensorLike): T;
subStrict<T extends this>(this: T, x: T | TensorLike): T;
pow<T extends Tensor>(this: T, exp: Tensor | TensorLike): T;
powStrict(exp: Tensor | TensorLike): Tensor<R>;
mul<T extends Tensor>(x: Tensor | TensorLike): T;
mulStrict<T extends this>(this: T, x: T | TensorLike): T;
div<T extends Tensor>(x: Tensor | TensorLike): T;
floorDiv<T extends Tensor>(x: Tensor | TensorLike): T;
divStrict<T extends this>(this: T, x: T | TensorLike): T;
minimum<T extends Tensor>(x: Tensor | TensorLike): T;
minimumStrict<T extends this>(this: T, x: T | TensorLike): T;
maximum<T extends Tensor>(x: Tensor | TensorLike): T;
maximumStrict<T extends this>(this: T, x: T | TensorLike): T;
mod<T extends Tensor>(x: Tensor | TensorLike): T;
modStrict<T extends this>(this: T, x: T | TensorLike): T;
squaredDifference<T extends Tensor>(x: Tensor | TensorLike): T;
squaredDifferenceStrict<T extends this>(this: T, x: T | TensorLike): T;
transpose<T extends Tensor>(this: T, perm?: number[]): T;
notEqual<T extends Tensor>(x: Tensor | TensorLike): T;
notEqualStrict<T extends this>(this: T, x: T | TensorLike): T;
less<T extends Tensor>(x: Tensor | TensorLike): T;
lessStrict<T extends this>(this: T, x: T | TensorLike): T;
equal<T extends Tensor>(x: Tensor | TensorLike): T;
equalStrict<T extends this>(this: T, x: T | TensorLike): T;
lessEqual<T extends Tensor>(x: Tensor | TensorLike): T;
lessEqualStrict<T extends this>(this: T, x: T | TensorLike): T;
greater<T extends Tensor>(x: Tensor | TensorLike): T;
greaterStrict<T extends this>(this: T, x: T | TensorLike): T;
greaterEqual<T extends Tensor>(x: Tensor | TensorLike): T;
greaterEqualStrict<T extends this>(this: T, x: T | TensorLike): T;
logicalAnd(x: Tensor | TensorLike): Tensor;
logicalOr(x: Tensor | TensorLike): Tensor;
logicalNot<T extends Tensor>(this: T): T;
logicalXor(x: Tensor | TensorLike): Tensor;
where(condition: Tensor | TensorLike, x: Tensor | TensorLike): Tensor;
neg<T extends Tensor>(this: T): T;
ceil<T extends Tensor>(this: T): T;
floor<T extends Tensor>(this: T): T;
sign<T extends Tensor>(this: T): T;
exp<T extends Tensor>(this: T): T;
expm1<T extends Tensor>(this: T): T;
log<T extends Tensor>(this: T): T;
log1p<T extends Tensor>(this: T): T;
sqrt<T extends Tensor>(this: T): T;
rsqrt<T extends Tensor>(this: T): T;
square<T extends Tensor>(this: T): T;
reciprocal<T extends Tensor>(this: T): T;
abs<T extends Tensor>(this: T): T;
clipByValue(min: number, max: number): Tensor<R>;
relu<T extends Tensor>(this: T): T;
elu<T extends Tensor>(this: T): T;
selu<T extends Tensor>(this: T): T;
leakyRelu(alpha?: number): Tensor<R>;
prelu(alpha: Tensor<R> | TensorLike): Tensor<R>;
sigmoid<T extends Tensor>(this: T): T;
logSigmoid<T extends Tensor>(this: T): T;
softplus<T extends Tensor>(this: T): T;
zerosLike<T extends Tensor>(this: T): T;
onesLike<T extends Tensor>(this: T): T;
sin<T extends Tensor>(this: T): T;
cos<T extends Tensor>(this: T): T;
tan<T extends Tensor>(this: T): T;
asin<T extends Tensor>(this: T): T;
acos<T extends Tensor>(this: T): T;
atan<T extends Tensor>(this: T): T;
sinh<T extends Tensor>(this: T): T;
cosh<T extends Tensor>(this: T): T;
tanh<T extends Tensor>(this: T): T;
asinh<T extends Tensor>(this: T): T;
acosh<T extends Tensor>(this: T): T;
atanh<T extends Tensor>(this: T): T;
erf<T extends Tensor>(this: T): T;
round<T extends Tensor>(this: T): T;
step<T extends Tensor>(this: T, alpha?: number): T;
softmax<T extends this>(this: T, dim?: number): T;
logSoftmax<T extends this>(this: T, axis?: number): T;
resizeBilinear<T extends Tensor3D | Tensor4D>(this: T, newShape2D: [number, number], alignCorners?: boolean): T;
resizeNearestNeighbor<T extends Tensor3D | Tensor4D>(this: T, newShape2D: [number, number], alignCorners?: boolean): T;
conv1d<T extends Tensor2D | Tensor3D>(this: T, filter: Tensor3D | TensorLike3D, stride: number, pad: 'valid' | 'same' | number, dataFormat?: 'NWC' | 'NCW', dilation?: number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
conv2d<T extends Tensor3D | Tensor4D>(this: T, filter: Tensor4D | TensorLike4D, strides: [number, number] | number, pad: 'valid' | 'same' | number, dataFormat?: 'NHWC' | 'NCHW', dilations?: [number, number] | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
conv2dTranspose<T extends Tensor3D | Tensor4D>(this: T, filter: Tensor4D | TensorLike4D, outputShape: [number, number, number, number] | [number, number, number], strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
depthwiseConv2D<T extends Tensor3D | Tensor4D>(this: T, filter: Tensor4D | TensorLike4D, strides: [number, number] | number, pad: 'valid' | 'same' | number, dataFormat?: 'NHWC' | 'NCHW', dilations?: [number, number] | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
separableConv2d<T extends Tensor3D | Tensor4D>(this: T | TensorLike, depthwiseFilter: Tensor4D | TensorLike4D, pointwiseFilter: Tensor4D | TensorLike, strides: [number, number] | number, pad: 'valid' | 'same', dilation?: [number, number] | number, dataFormat?: 'NHWC' | 'NCHW'): T;
avgPool<T extends Tensor3D | Tensor4D>(this: T, filterSize: [number, number] | number, strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
maxPool<T extends Tensor3D | Tensor4D>(this: T, filterSize: [number, number] | number, strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
localResponseNormalization<T extends Tensor3D | Tensor4D>(this: T, radius?: number, bias?: number, alpha?: number, beta?: number): T;
pool<T extends Tensor3D | Tensor4D>(this: T, windowShape: [number, number] | number, poolingType: 'max' | 'avg', padding: 'valid' | 'same' | number, dilationRate?: [number, number] | number, strides?: [number, number] | number): T;
variable(trainable?: boolean, name?: string, dtype?: DataType): Variable<R>;
unsortedSegmentSum<T extends Tensor>(this: T, segmentIds: Tensor1D | TensorLike1D, numSegments: number): T;
batchToSpaceND<T extends Tensor>(this: T, blockShape: number[], crops: number[][]): T;
spaceToBatchND<T extends Tensor>(this: T, blockShape: number[], paddings: number[][]): T;
topk<T extends Tensor>(this: T, k?: number, sorted?: boolean): {
values: T;
indices: T;
};
stridedSlice(this: Tensor, begin: number[], end: number[], strides: number[], beginMask?: number, endMask?: number, ellipsisMask?: number, newAxisMask?: number, shrinkAxisMask?: number): Tensor;
depthToSpace(this: Tensor4D, blockSize: number, dataFormat: 'NHWC' | 'NCHW'): Tensor4D;
fft(this: Tensor): Tensor;
ifft(this: Tensor): Tensor;
rfft(this: Tensor): Tensor;
irfft(this: Tensor): Tensor;
}
export interface NumericTensor<R extends Rank = Rank> extends Tensor<R> {
dtype: NumericDataType;
data(): Promise<TypedArray>;
dataSync(): TypedArray;
}
export interface StringTensor<R extends Rank = Rank> extends Tensor<R> {
dtype: 'string';
dataSync(): string[];
data(): Promise<string[]>;
}
/** @doclink Tensor */
export declare type Scalar = Tensor<Rank.R0>;
/** @doclink Tensor */
export declare type Tensor1D = Tensor<Rank.R1>;
/** @doclink Tensor */
export declare type Tensor2D = Tensor<Rank.R2>;
/** @doclink Tensor */
export declare type Tensor3D = Tensor<Rank.R3>;
/** @doclink Tensor */
export declare type Tensor4D = Tensor<Rank.R4>;
/** @doclink Tensor */
export declare type Tensor5D = Tensor<Rank.R5>;
/** @doclink Tensor */
export declare type Tensor6D = Tensor<Rank.R6>;
/**
* A mutable `tf.Tensor`, useful for persisting state, e.g. for training.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
export declare class Variable<R extends Rank = Rank> extends Tensor<R> {
trainable: boolean;
name: string;
/**
* Private constructor since we cannot add logic before calling `super()`.
* Instead, we expose static `Variable.variable` method below, which will be
* added to global namespace.
*/
private constructor();
/**
* Creates a new variable with the provided initial value.
* ```js
* const x = tf.variable(tf.tensor([1, 2, 3]));
* x.assign(tf.tensor([4, 5, 6]));
*
* x.print();
* ```
*
* @param initialValue Initial value for the tensor.
* @param trainable If true, optimizers are allowed to update it.
* @param name Name of the variable. Defaults to a unique id.
* @param dtype If set, initialValue will be converted to the given type.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
static variable<R extends Rank>(initialValue: Tensor<R>, trainable?: boolean, name?: string, dtype?: DataType): Variable<R>;
/**
* Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have
* the same shape and dtype as the old `tf.Tensor`.
*
* @param newValue New tensor to be assigned to this variable.
*/
/** @doc {heading: 'Tensors', subheading: 'Classes'} */
assign(newValue: Tensor<R>): void;
}
declare const variable: typeof Variable.variable;
export { variable };