@tensorflow-models/coco-ssd
Version:
Object detection model (coco-ssd) in TensorFlow.js
381 lines • 20.4 kB
JavaScript
"use strict";
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
Object.defineProperty(exports, "__esModule", { value: true });
var environment_1 = require("../environment");
var tensor_util_env_1 = require("../tensor_util_env");
var util = require("../util");
var array_ops_1 = require("./array_ops");
var conv_util = require("./conv_util");
var operation_1 = require("./operation");
/**
* Computes the 2D max pooling of an image.
*
* @param x The input tensor, of rank 4 or rank 3 of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
* in which we sample input values across the height and width dimensions
* in dilated pooling. Defaults to `[1, 1]`. If `dilations` is a single
* number, then `dilationHeight == dilationWidth`. If it is greater than
* 1, then all values of `strides` must be 1.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
function maxPoolImpl_(x, filterSize, strides, dilations, pad, dimRoundingMode) {
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'maxPool');
var x4D = $x;
var reshapedTo4D = false;
if ($x.rank === 3) {
reshapedTo4D = true;
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
}
if (dilations == null) {
dilations = [1, 1];
}
util.assert(x4D.rank === 4, "Error in maxPool: input must be rank 4 but got rank " + x4D.rank + ".");
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), 'Error in maxPool: Either strides or dilations must be 1. ' +
("Got strides " + strides + " and dilations '" + dilations + "'"));
if (dimRoundingMode != null) {
util.assert(util.isInt(pad), "Error in maxPool: pad must be an integer when using, " +
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."));
}
var convInfo = conv_util.computePool2DInfo(x4D.shape, filterSize, strides, dilations, pad, dimRoundingMode);
var grad = function (dy, saved) {
var y4D = saved[0];
return {
x: function () { return maxPoolBackprop(dy, x4D, y4D, filterSize, strides, dilations, pad); }
};
};
var res = environment_1.ENV.engine.runKernel(function (backend, save) { return save(backend.maxPool(x4D, convInfo)); }, { x: x4D }, grad);
if (reshapedTo4D) {
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
}
return res;
}
/**
* Computes the 2D max pooling of an image.
*
* @param x The input tensor, of rank 4 or rank 3 of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function maxPool_(x, filterSize, strides, pad, dimRoundingMode) {
return maxPoolImpl_(x, filterSize, strides, 1, pad, dimRoundingMode);
}
/**
* Computes the 2D average pooling of an image.
*
* @param x The input tensor, of rank 4 or rank 3 of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
* in which we sample input values across the height and width dimensions
* in dilated pooling. Defaults to `[1, 1]`. If `dilations` is a single
* number, then `dilationHeight == dilationWidth`. If it is greater than
* 1, then all values of `strides` must be 1.
* @param pad The type of padding algorithm:
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
function avgPoolImpl_(x, filterSize, strides, dilations, pad, dimRoundingMode) {
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'avgPool', 'float32');
if (dilations == null) {
dilations = [1, 1];
}
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), 'Error in avgPool: Either strides or dilations must be 1. ' +
("Got strides " + strides + " and dilations '" + dilations + "'"));
var x4D = $x;
var reshapedTo4D = false;
if ($x.rank === 3) {
reshapedTo4D = true;
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
}
util.assert(x4D.rank === 4, "Error in avgPool: x must be rank 4 but got rank " + x4D.rank + ".");
if (dimRoundingMode != null) {
util.assert(util.isInt(pad), "Error in avgPool: pad must be an integer when using, " +
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."));
}
var convInfo = conv_util.computePool2DInfo(x4D.shape, filterSize, strides, dilations, pad, dimRoundingMode);
var grad = function (dy) {
return {
x: function () { return avgPoolBackprop(dy, x4D, filterSize, strides, dilations, pad); }
};
};
var res = environment_1.ENV.engine.runKernel(function (backend) { return backend.avgPool(x4D, convInfo); }, { x: x4D }, grad);
res = res.cast($x.dtype);
if (reshapedTo4D) {
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
}
return res;
}
/**
* Computes the 2D average pooling of an image.
*
* @param x The input tensor, of rank 4 or rank 3 of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
* @param pad The type of padding algorithm:
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function avgPool_(x, filterSize, strides, pad, dimRoundingMode) {
return avgPoolImpl_(x, filterSize, strides, 1, pad, dimRoundingMode);
}
/**
* Performs an N-D pooling operation
*
* @param input The input tensor, of rank 4 or rank 3 of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
* @param windowShape The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param poolingType The type of pooling, either 'max' or 'avg'.
* @param pad The type of padding algorithm:
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
* in which we sample input values across the height and width dimensions
* in dilated pooling. Defaults to `[1, 1]`. If `dilationRate` is a single
* number, then `dilationHeight == dilationWidth`. If it is greater than
* 1, then all values of `strides` must be 1.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function pool_(input, windowShape, poolingType, pad, dilations, strides) {
if (dilations == null) {
dilations = [1, 1];
}
if (strides == null) {
strides = 1;
}
if (pad === 0) {
pad = 'valid';
}
var $x = tensor_util_env_1.convertToTensor(input, 'x', 'maxPool');
var x4D = $x;
var reshapedTo4D = false;
if ($x.rank === 3) {
reshapedTo4D = true;
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
}
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), 'Error in pool: Either strides or dilations must be 1. ' +
("Got strides " + strides + " and dilations '" + dilations + "'"));
var convInfo = conv_util.computePool2DInfo(x4D.shape, windowShape, strides, dilations, pad);
var dilation = [convInfo.dilationHeight, convInfo.dilationWidth];
// The following implementation does batchToSpace(pool(spaceToBatch(x)))
// whenever dilation > 1 since the TF kernels do not support dilation > 1.
// tslint:disable-next-line:max-line-length
// https://github.com/tensorflow/tensorflow/blob/50f6bb67dc98c9b74630b6047aae7a4f8a40fd02/tensorflow/python/ops/nn_ops.py#L1037
var basePadding;
if (pad === 'same') {
basePadding = withSpaceToBatchBasePaddings([convInfo.filterHeight, convInfo.filterWidth], dilation);
}
else {
basePadding = [[0, 0], [0, 0]];
}
var isDilationOne = dilation[0] === 1 && dilation[1] === 1;
var _a = requiredSpaceToBatchPaddings([convInfo.inHeight, convInfo.inWidth], dilation, basePadding), adjustedPadding = _a[0], adjustedCrops = _a[1];
var convertedPad = isDilationOne ? pad : 'valid';
var convertedX = isDilationOne ? x4D : array_ops_1.spaceToBatchND(x4D, dilation, adjustedPadding);
var forwardOp = poolingType === 'avg' ?
function () { return avgPoolImpl_(convertedX, windowShape, strides, 1 /* dilation */, convertedPad); } :
function () { return maxPoolImpl_(convertedX, windowShape, strides, 1 /* dilation */, convertedPad); };
var y = forwardOp();
var res = isDilationOne ? y : array_ops_1.batchToSpaceND(y, dilation, adjustedCrops);
if (reshapedTo4D) {
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
}
return res;
}
/**
* Computes the backprop of a max pool.
*
* @param dy The dy error, of rank 4 or rank 3 of shape
* [batchSize, height, width, channels]. If rank 3, batch of 1 is
* assumed.
* @param input The original input image, of rank 4, of shape
* [batchSize, height, width, channels].
* @param output The original output image, of rank 4, of shape
* [batchSize, outHeight, outWidth, channels].
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
* used in the forward prop of the op.
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The
* rounding mode used when computing output dimensions if pad is a
* number. If none is provided, it will not round and error if the output
* is of fractional size.
*/
function maxPoolBackprop(dy, input, output, filterSize, strides, dilations, pad, dimRoundingMode) {
var $dy = tensor_util_env_1.convertToTensor(dy, 'dy', 'maxPoolBackprop');
var $input = tensor_util_env_1.convertToTensor(input, 'input', 'maxPoolBackprop');
var $output = tensor_util_env_1.convertToTensor(output, 'output', 'maxPoolBackprop');
util.assert($input.rank === $dy.rank, "Rank of input (" + $input.rank + ") does not match rank of dy (" + $dy.rank + ")");
if (dilations == null) {
dilations = [1, 1];
}
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), 'Error in maxPoolBackProp: Either strides or dilations must be 1. ' +
("Got strides " + strides + " and dilations '" + dilations + "'"));
util.assert($dy.rank === 4, "Error in maxPoolBackprop: dy must be rank 4 but got rank " +
($dy.rank + "."));
util.assert($input.rank === 4, "Error in maxPoolBackprop: input must be rank 4 but got rank " +
($input.rank + "."));
if (dimRoundingMode != null) {
util.assert(util.isInt(pad), "Error in maxPoolBackprop: pad must be an integer when using, " +
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."));
}
var convInfo = conv_util.computePool2DInfo($input.shape, filterSize, strides, dilations, pad, dimRoundingMode);
var res = environment_1.ENV.engine.runKernel(function (backend) { return backend.maxPoolBackprop($dy, $input, $output, convInfo); }, { $dy: $dy, $input: $input });
return res;
}
/**
* Computes the backprop of an avg pool.
*
* @param dy The dy error, of rank 4 or rank 3 of shape
* [batchSize, height, width, channels]. If rank 3, batch of 1 is
* assumed.
* @param input The input image, of rank 4 or rank 3 of shape
* [batchSize, height, width, channels]. If rank 3, batch of 1 is
* assumed.
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
* `filterSize` is a single number, then `filterHeight == filterWidth`.
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
* `strides` is a single number, then `strideHeight == strideWidth`.
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
* used in the forward prop of the op.
*/
function avgPoolBackprop(dy, input, filterSize, strides, dilations, pad) {
var $dy = tensor_util_env_1.convertToTensor(dy, 'dy', 'avgPoolBackprop');
var $input = tensor_util_env_1.convertToTensor(input, 'input', 'avgPoolBackprop');
util.assert($input.rank === $dy.rank, "Rank of input (" + $input.rank + ") does not match rank of dy (" + $dy.rank + ")");
if (dilations == null) {
dilations = [1, 1];
}
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), 'Error in avgPoolBackprop: Either strides or dilations must be 1. ' +
("Got strides " + strides + " and dilations '" + dilations + "'"));
var input4D = $input;
var dy4D = $dy;
var reshapedTo4D = false;
if ($input.rank === 3) {
reshapedTo4D = true;
input4D = $input.as4D(1, $input.shape[0], $input.shape[1], $input.shape[2]);
dy4D = $dy.as4D(1, $dy.shape[0], $dy.shape[1], $dy.shape[2]);
}
util.assert(dy4D.rank === 4, "Error in avgPoolBackprop: dy must be rank 4 but got rank " +
(dy4D.rank + "."));
util.assert(input4D.rank === 4, "Error in avgPoolBackprop: input must be rank 4 but got rank " +
(input4D.rank + "."));
var convInfo = conv_util.computePool2DInfo(input4D.shape, filterSize, strides, dilations, pad);
var res = environment_1.ENV.engine.runKernel(function (backend) { return backend.avgPoolBackprop(dy4D, input4D, convInfo); }, { dy4D: dy4D, input4D: input4D });
if (reshapedTo4D) {
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
}
return res;
}
// Helper function to compute crops and paddings for pool with dilation > 1.
// tslint:disable-next-line:max-line-length
// https://github.com/tensorflow/tensorflow/blob/50f6bb67dc98c9b74630b6047aae7a4f8a40fd02/tensorflow/python/ops/array_ops.py#L2184
function requiredSpaceToBatchPaddings(inputShape, blockShape, basePadding) {
var padStart = basePadding.map(function (b) { return b[0]; });
var origPadEnd = basePadding.map(function (b) { return b[1]; });
var fullInputShape = inputShape.concat(padStart, origPadEnd);
var padEndExtra = blockShape.map(function (b, i) { return (b - fullInputShape[i] % b) % b; });
var padEnd = origPadEnd.map(function (s, i) { return s + padEndExtra[i]; });
var paddings = blockShape.map(function (_, i) { return [padStart[i], padEnd[i]]; });
var crops = blockShape.map(function (_, i) { return [0, padEndExtra[i]]; });
return [paddings, crops];
}
// Helper function to compute base paddings for pool with dilation > 1.
// tslint:disable-next-line:max-line-length
// https://github.com/tensorflow/tensorflow/blob/50f6bb67dc98c9b74630b6047aae7a4f8a40fd02/tensorflow/python/ops/nn_ops.py#L524
function withSpaceToBatchBasePaddings(filterShape, dilation) {
// Spatial dimensions of the filters and the upsampled filters in which we
// introduce (rate - 1) zeros between consecutive filter values.
var dilatedFilterShape = filterShape.map(function (s, i) {
return s + (s - 1) * (dilation[i] - 1);
});
var padExtraShape = dilatedFilterShape.map(function (s) { return s - 1; });
// When padding is odd, we pad more at end, following the same
// convention as conv2d.
var padExtraStart = padExtraShape.map(function (s) { return Math.floor(s / 2); });
var padExtraEnd = padExtraShape.map(function (s, i) { return s - padExtraStart[i]; });
return padExtraShape.map(function (_, i) {
return [padExtraStart[i], padExtraEnd[i]];
});
}
exports.maxPool = operation_1.op({ maxPool_: maxPool_ });
exports.avgPool = operation_1.op({ avgPool_: avgPool_ });
exports.pool = operation_1.op({ pool_: pool_ });
//# sourceMappingURL=pool.js.map