UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

66 lines 3.12 kB
"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); var environment_1 = require("../environment"); var tensor_util_env_1 = require("../tensor_util_env"); var util = require("../util"); var operation_1 = require("./operation"); /** * Normalizes the activation of a local neighborhood across or within * channels. * * @param x The input tensor. The 4-D input tensor is treated as a 3-D array * of 1D vectors (along the last dimension), and each vector is * normalized independently. * @param depthRadius The number of adjacent channels in the 1D normalization * window. * @param bias A constant bias term for the basis. * @param alpha A scale factor, usually positive. * @param beta An exponent. */ /** @doc {heading: 'Operations', subheading: 'Normalization'} */ function localResponseNormalization_(x, depthRadius, bias, alpha, beta) { if (depthRadius === void 0) { depthRadius = 5; } if (bias === void 0) { bias = 1; } if (alpha === void 0) { alpha = 1; } if (beta === void 0) { beta = 0.5; } var $x = tensor_util_env_1.convertToTensor(x, 'x', 'localResponseNormalization'); util.assert($x.rank === 4 || $x.rank === 3, "Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank " + $x.rank + "."); util.assert(util.isInt(depthRadius), "Error in localResponseNormalization: depthRadius must be an integer\n but got depthRadius " + depthRadius + "."); var x4D = $x; var reshapedTo4D = false; if ($x.rank === 3) { reshapedTo4D = true; x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]); } var backward = function (dy, saved) { var outputImage = saved[0]; return { x4D: function () { return environment_1.ENV.engine.runKernel(function (backend) { return backend.LRNGrad(dy, x4D, outputImage, depthRadius, bias, alpha, beta); }, {}); } }; }; var res = environment_1.ENV.engine.runKernel(function (backend, save) { return save(backend.localResponseNormalization4D(x4D, depthRadius, bias, alpha, beta)); }, { x4D: x4D }, backward); if (reshapedTo4D) { return res.as3D(res.shape[1], res.shape[2], res.shape[3]); } else { return res; } } exports.localResponseNormalization = operation_1.op({ localResponseNormalization_: localResponseNormalization_ }); //# sourceMappingURL=lrn.js.map