@tensorflow-models/coco-ssd
Version:
Object detection model (coco-ssd) in TensorFlow.js
252 lines (251 loc) • 14.8 kB
TypeScript
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import { Tensor2D, Tensor3D, Tensor4D, Tensor5D } from '../tensor';
import { TensorLike } from '../types';
/**
* Computes a 1D convolution over the input x.
*
* @param x The input tensor, of rank 3 or rank 2, of shape
* `[batch, width, inChannels]`. If rank 2, batch of 1 is assumed.
* @param filter The filter, rank 3, of shape
* `[filterWidth, inDepth, outDepth]`.
* @param stride The number of entries by which the filter is moved right at
* each step.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dataFormat An optional string from "NWC", "NCW". Defaults to "NWC",
* the data is stored in the order of [batch, in_width, in_channels]. Only
* "NWC" is currently supported.
* @param dilation The dilation rate in which we sample input values in
* atrous convolution. Defaults to `1`. If it is greater than 1, then
* stride must be `1`.
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
declare function conv1d_<T extends Tensor2D | Tensor3D>(x: T | TensorLike, filter: Tensor3D | TensorLike, stride: number, pad: 'valid' | 'same' | number, dataFormat?: 'NWC' | 'NCW', dilation?: number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
/**
* Computes a 2D convolution over the input x.
*
* @param x The input tensor, of rank 4 or rank 3, of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
* assumed.
* @param filter The filter, rank 4, of shape
* `[filterHeight, filterWidth, inDepth, outDepth]`.
* @param strides The strides of the convolution: `[strideHeight,
* strideWidth]`.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
* "NHWC". Specify the data format of the input and output data. With the
* default format "NHWC", the data is stored in the order of: [batch,
* height, width, channels]. Only "NHWC" is currently supported.
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
* in which we sample input values across the height and width dimensions
* in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single
* number, then `dilationHeight == dilationWidth`. If it is greater than
* 1, then all values of `strides` must be 1.
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
declare function conv2d_<T extends Tensor3D | Tensor4D>(x: T | TensorLike, filter: Tensor4D | TensorLike, strides: [number, number] | number, pad: 'valid' | 'same' | number, dataFormat?: 'NHWC' | 'NCHW', dilations?: [number, number] | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
/**
* Computes the derivative of the filter of a 2D convolution.
*
* @param x The input tensor, of rank 4 or rank 3 of shape
* [batch, height, width, inChannels]. If rank 3, batch of 1 is assumed.
* @param dy The dy image, of rank 4 or rank 3, of shape
* [batch, height, width, outDepth]. If rank 3, batch of 1 is assumed.
* @param filterShape The shape of the filter, length 4,
* [filterHeight, filterWidth, inDepth, outDepth].
* @param strides The strides of the convolution: [strideHeight,
* strideWidth].
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
* used in the forward prop of the op.
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The
* rounding mode used when computing output dimensions if pad is a
* number. If none is provided, it will not round and error if the output
* is of fractional size.
*/
declare function conv2dDerFilter_<T extends Tensor3D | Tensor4D>(x: T, dy: T, filterShape: [number, number, number, number], strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): Tensor4D;
/**
* Computes the transposed 2D convolution of an image, also known as a
* deconvolution.
*
* @param x The input image, of rank 4 or rank 3, of shape
* `[batch, height, width, inDepth]`. If rank 3, batch of 1 is assumed.
* @param filter The filter, rank 4, of shape
* `[filterHeight, filterWidth, outDepth, inDepth]`.
* `inDepth` must match `inDepth` in `x`.
* @param outputShape Output shape, of rank 4 or rank 3:
* `[batch, height, width, outDepth]`. If rank 3, batch of 1 is assumed.
* @param strides The strides of the original convolution:
* `[strideHeight, strideWidth]`.
* @param pad The type of padding algorithm used in the non-transpose version
* of the op.
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
declare function conv2dTranspose_<T extends Tensor3D | Tensor4D>(x: T | TensorLike, filter: Tensor4D | TensorLike, outputShape: [number, number, number, number] | [number, number, number], strides: [number, number] | number, pad: 'valid' | 'same' | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
/**
* Depthwise 2D convolution.
*
* Given a 4D `input` array and a `filter` array of shape
* `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing
* `inChannels` convolutional filters of depth 1, this op applies a
* different filter to each input channel (expanding from 1 channel to
* `channelMultiplier` channels for each), then concatenates the results
* together. The output has `inChannels * channelMultiplier` channels.
*
* See
* [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d](
* https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d)
* for more details.
*
* @param x The input tensor, of rank 4 or rank 3, of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
* assumed.
* @param filter The filter tensor, rank 4, of shape
* `[filterHeight, filterWidth, inChannels, channelMultiplier]`.
* @param strides The strides of the convolution: `[strideHeight,
* strideWidth]`. If strides is a single number, then `strideHeight ==
* strideWidth`.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
* in which we sample input values across the height and width dimensions
* in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
* number, then `dilationHeight == dilationWidth`. If it is greater than
* 1, then all values of `strides` must be 1.
* @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
* "NHWC". Specify the data format of the input and output data. With the
* default format "NHWC", the data is stored in the order of: [batch,
* height, width, channels]. Only "NHWC" is currently supported.
* @param dimRoundingMode The rounding mode used when computing output
* dimensions if pad is a number. If none is provided, it will not round
* and error if the output is of fractional size.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
declare function depthwiseConv2d_<T extends Tensor3D | Tensor4D>(x: T | TensorLike, filter: Tensor4D | TensorLike, strides: [number, number] | number, pad: 'valid' | 'same' | number, dataFormat?: 'NHWC' | 'NCHW', dilations?: [number, number] | number, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
/**
* 2-D convolution with separable filters.
*
* Performs a depthwise convolution that acts separately on channels followed
* by a pointwise convolution that mixes channels. Note that this is
* separability between dimensions [1, 2] and 3, not spatial separability
* between dimensions 1 and 2.
*
* See
* [https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d](
* https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d)
* for more details.
*
* @param x The input tensor, of rank 4 or rank 3, of shape
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
* assumed.
* @param depthwiseFilter The depthwise filter tensor, rank 4, of shape
* `[filterHeight, filterWidth, inChannels, channelMultiplier]`. This is
* the filter used in the first step.
* @param pointwiseFilter The pointwise filter tensor, rank 4, of shape
* `[1, 1, inChannels * channelMultiplier, outChannels]`. This is
* the filter used in the second step.
* @param strides The strides of the convolution: `[strideHeight,
* strideWidth]`. If strides is a single number, then `strideHeight ==
* strideWidth`.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
* in which we sample input values across the height and width dimensions
* in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
* number, then `dilationHeight == dilationWidth`. If it is greater than
* 1, then all values of `strides` must be 1.
* @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
* "NHWC". Specify the data format of the input and output data. With the
* default format "NHWC", the data is stored in the order of: [batch,
* height, width, channels]. Only "NHWC" is currently supported.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
declare function separableConv2d_<T extends Tensor3D | Tensor4D>(x: T | TensorLike, depthwiseFilter: Tensor4D | TensorLike, pointwiseFilter: Tensor4D | TensorLike, strides: [number, number] | number, pad: 'valid' | 'same', dilation?: [number, number] | number, dataFormat?: 'NHWC' | 'NCHW'): T;
/**
* Computes a 3D convolution over the input x.
*
* @param x The input tensor, of rank 5 or rank 4, of shape
* `[batch, depth, height, width, channels]`. If rank 4,
* batch of 1 is assumed.
* @param filter The filter, rank 5, of shape
* `[filterDepth, filterHeight, filterWidth, inChannels, outChannels]`.
* inChannels must match between input and filter.
* @param strides The strides of the convolution: `[strideDepth, strideHeight,
* strideWidth]`.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
* @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
* "NHWC". Specify the data format of the input and output data. With the
* default format "NHWC", the data is stored in the order of: [batch,
* depth, height, width, channels]. Only "NHWC" is currently supported.
* @param dilations The dilation rates: `[dilationDepth, dilationHeight,
* dilationWidth]` in which we sample input values across the height
* and width dimensions in atrous convolution. Defaults to `[1, 1, 1]`.
* If `dilations` is a single number, then
* `dilationDepth == dilationHeight == dilationWidth`. If it is greater
* than 1, then all values of `strides` must be 1.
*/
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
declare function conv3d_<T extends Tensor4D | Tensor5D>(x: T | TensorLike, filter: Tensor5D | TensorLike, strides: [number, number, number] | number, pad: 'valid' | 'same', dataFormat?: 'NHWC' | 'NCHW', dilations?: [number, number, number] | number): T;
export declare const conv1d: typeof conv1d_;
export declare const conv2d: typeof conv2d_;
export declare const conv3d: typeof conv3d_;
export declare const conv2dDerFilter: typeof conv2dDerFilter_;
export declare const depthwiseConv2d: typeof depthwiseConv2d_;
export declare const separableConv2d: typeof separableConv2d_;
export declare const conv2dTranspose: typeof conv2dTranspose_;
export {};