UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

197 lines 9.75 kB
"use strict"; /** * @license * Copyright 2019 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var environment_1 = require("../environment"); var tensor_1 = require("../tensor"); var tensor_util_env_1 = require("../tensor_util_env"); var operation_1 = require("./operation"); /** * Creates a `tf.Tensor` from an image. * * ```js * const image = new ImageData(1, 1); * image.data[0] = 100; * image.data[1] = 150; * image.data[2] = 200; * image.data[3] = 255; * * tf.browser.fromPixels(image).print(); * ``` * * @param pixels The input image to construct the tensor from. The * supported image types are all 4-channel. * @param numChannels The number of channels of the output tensor. A * numChannels value less than 4 allows you to ignore channels. Defaults to * 3 (ignores alpha channel of input image). */ /** @doc {heading: 'Browser', namespace: 'browser'} */ function fromPixels_(pixels, numChannels) { if (numChannels === void 0) { numChannels = 3; } if (numChannels > 4) { throw new Error('Cannot construct Tensor with more than 4 channels from pixels.'); } return environment_1.ENV.engine.fromPixels(pixels, numChannels); } /** * Draws a `tf.Tensor` of pixel values to a byte array or optionally a * canvas. * * When the dtype of the input is 'float32', we assume values in the range * [0-1]. Otherwise, when input is 'int32', we assume values in the range * [0-255]. * * Returns a promise that resolves when the canvas has been drawn to. * * @param img A rank-2 or rank-3 tensor. If rank-2, draws grayscale. If * rank-3, must have depth of 1, 3 or 4. When depth of 1, draws * grayscale. When depth of 3, we draw with the first three components of * the depth dimension corresponding to r, g, b and alpha = 1. When depth of * 4, all four components of the depth dimension correspond to r, g, b, a. * @param canvas The canvas to draw to. */ /** @doc {heading: 'Browser', namespace: 'browser'} */ function toPixels(img, canvas) { return __awaiter(this, void 0, void 0, function () { var $img, _a, height, width, depth, minTensor, maxTensor, min, max, data, multiplier, bytes, i, r, g, b, a, j, ctx, imageData; return __generator(this, function (_b) { switch (_b.label) { case 0: $img = tensor_util_env_1.convertToTensor(img, 'img', 'toPixels'); if (!(img instanceof tensor_1.Tensor)) { // Assume int32 if user passed a native array. $img = $img.toInt(); } if ($img.rank !== 2 && $img.rank !== 3) { throw new Error("toPixels only supports rank 2 or 3 tensors, got rank " + $img.rank + "."); } _a = $img.shape.slice(0, 2), height = _a[0], width = _a[1]; depth = $img.rank === 2 ? 1 : $img.shape[2]; if (depth > 4 || depth === 2) { throw new Error("toPixels only supports depth of size " + ("1, 3 or 4 but got " + depth)); } minTensor = $img.min(); maxTensor = $img.max(); return [4 /*yield*/, minTensor.data()]; case 1: min = (_b.sent())[0]; return [4 /*yield*/, maxTensor.data()]; case 2: max = (_b.sent())[0]; minTensor.dispose(); maxTensor.dispose(); if ($img.dtype === 'float32') { if (min < 0 || max > 1) { throw new Error("Tensor values for a float32 Tensor must be in the " + ("range [0 - 1] but got range [" + min + " - " + max + "].")); } } else if ($img.dtype === 'int32') { if (min < 0 || max > 255) { throw new Error("Tensor values for a int32 Tensor must be in the " + ("range [0 - 255] but got range [" + min + " - " + max + "].")); } } else { throw new Error("Unsupported type for toPixels: " + $img.dtype + "." + " Please use float32 or int32 tensors."); } return [4 /*yield*/, $img.data()]; case 3: data = _b.sent(); multiplier = $img.dtype === 'float32' ? 255 : 1; bytes = new Uint8ClampedArray(width * height * 4); for (i = 0; i < height * width; ++i) { r = void 0, g = void 0, b = void 0, a = void 0; if (depth === 1) { r = data[i] * multiplier; g = data[i] * multiplier; b = data[i] * multiplier; a = 255; } else if (depth === 3) { r = data[i * 3] * multiplier; g = data[i * 3 + 1] * multiplier; b = data[i * 3 + 2] * multiplier; a = 255; } else if (depth === 4) { r = data[i * 4] * multiplier; g = data[i * 4 + 1] * multiplier; b = data[i * 4 + 2] * multiplier; a = data[i * 4 + 3] * multiplier; } j = i * 4; bytes[j + 0] = Math.round(r); bytes[j + 1] = Math.round(g); bytes[j + 2] = Math.round(b); bytes[j + 3] = Math.round(a); } if (canvas != null) { canvas.width = width; canvas.height = height; ctx = canvas.getContext('2d'); imageData = new ImageData(bytes, width, height); ctx.putImageData(imageData, 0, 0); } if ($img !== img) { $img.dispose(); } return [2 /*return*/, bytes]; } }); }); } exports.toPixels = toPixels; exports.fromPixels = operation_1.op({ fromPixels_: fromPixels_ }); //# sourceMappingURL=browser.js.map