UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

460 lines 18.1 kB
"use strict"; /** * @license * Copyright 2018 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ Object.defineProperty(exports, "__esModule", { value: true }); /** Convenient class for storing tensor-related data. */ var DataStorage = /** @class */ (function () { function DataStorage(dataMover) { this.dataMover = dataMover; this.data = new WeakMap(); } DataStorage.prototype.get = function (dataId) { if (!this.data.has(dataId)) { this.dataMover.moveData(dataId); } return this.data.get(dataId); }; DataStorage.prototype.set = function (dataId, value) { this.data.set(dataId, value); }; DataStorage.prototype.has = function (dataId) { return this.data.has(dataId); }; DataStorage.prototype.delete = function (dataId) { return this.data.delete(dataId); }; return DataStorage; }()); exports.DataStorage = DataStorage; /** * The interface that defines the kernels that should be implemented when * adding a new backend. New backends don't need to implement every one of the * methods, this can be done gradually (throw an error for unimplemented * methods). */ var KernelBackend = /** @class */ (function () { function KernelBackend() { } KernelBackend.prototype.time = function (f) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.read = function (dataId) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.readSync = function (dataId) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.disposeData = function (dataId) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.write = function (dataId, values) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.fromPixels = function (pixels, numChannels) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.register = function (dataId, shape, dtype) { throw new Error('Not yet implemented.'); }; KernelBackend.prototype.memory = function () { throw new Error('Not yet implemented.'); }; /** Returns the highest precision for floats in bits (e.g. 16 or 32) */ KernelBackend.prototype.floatPrecision = function () { throw new Error('Not yet implemented'); }; KernelBackend.prototype.batchMatMul = function (a, b, transposeA, transposeB) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.fusedBatchMatMul = function (a, b, transposeA, transposeB, bias, activation) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.slice = function (x, begin, size) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.stridedSlice = function (x, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.unstack = function (x, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.reverse = function (a, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.concat = function (tensors, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.neg = function (a) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.add = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.addN = function (tensors) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.subtract = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.multiply = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.realDivide = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.floorDiv = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sum = function (x, axes) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.prod = function (x, axes) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.unsortedSegmentSum = function (x, segmentIds, numSegments) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.argMin = function (x, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.argMax = function (x, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.equal = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.notEqual = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.less = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.lessEqual = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.greater = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.greaterEqual = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.logicalNot = function (a) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.logicalAnd = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.logicalOr = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.where = function (condition) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.select = function (condition, a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.topk = function (x, k, sorted) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.min = function (x, axes) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.minimum = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.mod = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.max = function (x, axes) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.maximum = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.all = function (x, axes) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.any = function (x, axes) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.squaredDifference = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.ceil = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.floor = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.round = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sign = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.pow = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.exp = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.expm1 = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.log = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.log1p = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sqrt = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.rsqrt = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.square = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.reciprocal = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.relu = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.prelu = function (x, a) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.elu = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.eluDer = function (dy, y) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.selu = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.int = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.clip = function (x, min, max) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.abs = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.complexAbs = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sigmoid = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.softplus = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sin = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.cos = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.tan = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.asin = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.acos = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.atan = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.atan2 = function (a, b) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sinh = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.cosh = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.tanh = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.asinh = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.acosh = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.atanh = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.erf = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.step = function (x, alpha) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.conv2d = function (x, filter, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.conv2dDerInput = function (dy, filter, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.conv2dDerFilter = function (x, dY, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.depthwiseConv2D = function (input, filter, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.depthwiseConv2DDerInput = function (dy, filter, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.depthwiseConv2DDerFilter = function (x, dY, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.conv3d = function (x, filter, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.conv3dDerInput = function (dy, filter, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.conv3dDerFilter = function (x, dY, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.maxPool = function (x, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.maxPoolBackprop = function (dy, x, y, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.avgPool = function (x, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.avgPoolBackprop = function (dy, x, convInfo) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.reshape = function (x, shape) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.cast = function (x, dtype) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.tile = function (x, reps) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.pad = function (x, paddings, constantValue) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.transpose = function (x, perm) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.gather = function (x, indices, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.gatherND = function (x, indices) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.scatterND = function (indices, updates, shape) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.batchToSpaceND = function (x, blockShape, crops) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.spaceToBatchND = function (x, blockShape, paddings) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.resizeBilinear = function (x, newHeight, newWidth, alignCorners) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.resizeBilinearBackprop = function (dy, x, alignCorners) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.resizeNearestNeighbor = function (x, newHEight, newWidth, alignCorners) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.resizeNearestNeighborBackprop = function (dy, x, alignCorners) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.batchNormalization = function (x, mean, variance, varianceEpsilon, scale, offset) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.localResponseNormalization4D = function (x, radius, bias, alpha, beta) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.LRNGrad = function (dy, inputImage, outputImage, radius, bias, alpha, beta) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.multinomial = function (logits, normalized, numSamples, seed) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.oneHot = function (indices, depth, onValue, offValue) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.cumsum = function (x, axis, exclusive, reverse) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.nonMaxSuppression = function (boxes, scores, maxOutputSize, iouThreshold, scoreThreshold) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.fft = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.ifft = function (x) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.complex = function (real, imag) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.real = function (input) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.imag = function (input) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.cropAndResize = function (image, boxes, boxIndex, cropSize, method, extrapolationValue) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.depthToSpace = function (x, blockSize, dataFormat) { throw new Error('Not yet implemented'); }; // Aligns with the "SplitV" kernel in TensorFlow. KernelBackend.prototype.split = function (value, sizeSplits, axis) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.sparseToDense = function (sparseIndices, sparseValues, outputShape, defaultValue) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.fill = function (shape, value, dtype) { throw new Error('Not yet implemented.'); }; /** * Sets the data mover for this backend. Backends should use the mover to * move data from other backends to this backend. */ KernelBackend.prototype.setDataMover = function (dataMover) { throw new Error('Not yet implemented'); }; KernelBackend.prototype.dispose = function () { throw new Error('Not yet implemented'); }; return KernelBackend; }()); exports.KernelBackend = KernelBackend; //# sourceMappingURL=backend.js.map