@tensorflow-models/coco-ssd
Version:
Object detection model (coco-ssd) in TensorFlow.js
206 lines (205 loc) • 11.1 kB
TypeScript
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import { Conv2DInfo, Conv3DInfo } from '../ops/conv_util';
import { Activation } from '../ops/fused_util';
import { Backend, DataId, Scalar, Tensor, Tensor1D, Tensor2D, Tensor3D, Tensor4D, Tensor5D } from '../tensor';
import { DataType, DataValues, Rank, ShapeMap } from '../types';
export interface BackendTimingInfo {
kernelMs: number;
getExtraProfileInfo?(): string;
}
export interface TensorStorage {
read(dataId: DataId): Promise<DataValues>;
readSync(dataId: DataId): DataValues;
disposeData(dataId: DataId): void;
write(dataId: DataId, values: DataValues): void;
fromPixels(pixels: ImageData | HTMLImageElement | HTMLCanvasElement | HTMLVideoElement, numChannels: number): Tensor3D;
register(dataId: DataId, shape: number[], dtype: DataType): void;
memory(): {
unreliable: boolean;
};
}
/** Convenient class for storing tensor-related data. */
export declare class DataStorage<T> {
private dataMover;
private data;
constructor(dataMover: DataMover);
get(dataId: DataId): T;
set(dataId: DataId, value: T): void;
has(dataId: DataId): boolean;
delete(dataId: DataId): boolean;
}
export interface DataMover {
/**
* To be called by backends whenever they see a dataId that they don't own.
* Upon calling this method, the mover will fetch the tensor from another
* backend and register it with the current active backend.
*/
moveData(dataId: DataId): void;
}
export interface BackendTimer {
time(f: () => void): Promise<BackendTimingInfo>;
}
/**
* The interface that defines the kernels that should be implemented when
* adding a new backend. New backends don't need to implement every one of the
* methods, this can be done gradually (throw an error for unimplemented
* methods).
*/
export declare class KernelBackend implements TensorStorage, Backend, BackendTimer {
time(f: () => void): Promise<BackendTimingInfo>;
read(dataId: object): Promise<DataValues>;
readSync(dataId: object): DataValues;
disposeData(dataId: object): void;
write(dataId: object, values: DataValues): void;
fromPixels(pixels: ImageData | HTMLImageElement | HTMLCanvasElement | HTMLVideoElement, numChannels: number): Tensor<Rank.R3>;
register(dataId: object, shape: number[], dtype: DataType): void;
memory(): {
unreliable: boolean;
reasons?: string[];
};
/** Returns the highest precision for floats in bits (e.g. 16 or 32) */
floatPrecision(): number;
batchMatMul(a: Tensor3D, b: Tensor3D, transposeA: boolean, transposeB: boolean): Tensor3D;
fusedBatchMatMul(a: Tensor3D, b: Tensor3D, transposeA: boolean, transposeB: boolean, bias?: Tensor, activation?: Activation): Tensor3D;
slice<T extends Tensor>(x: T, begin: number[], size: number[]): T;
stridedSlice<T extends Tensor>(x: T, begin: number[], end: number[], strides: number[], beginMask: number, endMask: number, ellipsisMask: number, newAxisMask: number, shrinkAxisMask: number): T;
unstack(x: Tensor, axis: number): Tensor[];
reverse<T extends Tensor>(a: T, axis: number[]): T;
concat(tensors: Tensor[], axis: number): Tensor;
neg<T extends Tensor>(a: T): T;
add(a: Tensor, b: Tensor): Tensor;
addN<T extends Tensor>(tensors: T[]): T;
subtract(a: Tensor, b: Tensor): Tensor;
multiply(a: Tensor, b: Tensor): Tensor;
realDivide(a: Tensor, b: Tensor): Tensor;
floorDiv(a: Tensor, b: Tensor): Tensor;
sum(x: Tensor, axes: number[]): Tensor;
prod(x: Tensor, axes: number[]): Tensor;
unsortedSegmentSum<T extends Tensor>(x: T, segmentIds: Tensor1D, numSegments: number): Tensor;
argMin(x: Tensor, axis: number): Tensor;
argMax(x: Tensor, axis: number): Tensor;
equal(a: Tensor, b: Tensor): Tensor;
notEqual(a: Tensor, b: Tensor): Tensor;
less(a: Tensor, b: Tensor): Tensor;
lessEqual(a: Tensor, b: Tensor): Tensor;
greater(a: Tensor, b: Tensor): Tensor;
greaterEqual(a: Tensor, b: Tensor): Tensor;
logicalNot<T extends Tensor>(a: T): T;
logicalAnd(a: Tensor, b: Tensor): Tensor;
logicalOr(a: Tensor, b: Tensor): Tensor;
where(condition: Tensor): Tensor2D;
select(condition: Tensor, a: Tensor, b: Tensor): Tensor;
topk<T extends Tensor>(x: T, k: number, sorted: boolean): [T, T];
min(x: Tensor, axes: number[]): Tensor;
minimum(a: Tensor, b: Tensor): Tensor;
mod(a: Tensor, b: Tensor): Tensor;
max(x: Tensor, axes: number[]): Tensor;
maximum(a: Tensor, b: Tensor): Tensor;
all(x: Tensor, axes: number[]): Tensor;
any(x: Tensor, axes: number[]): Tensor;
squaredDifference(a: Tensor, b: Tensor): Tensor;
ceil<T extends Tensor>(x: T): T;
floor<T extends Tensor>(x: T): T;
round<T extends Tensor>(x: T): T;
sign<T extends Tensor>(x: T): T;
pow<T extends Tensor>(a: T, b: Tensor): T;
exp<T extends Tensor>(x: T): T;
expm1<T extends Tensor>(x: T): T;
log<T extends Tensor>(x: T): T;
log1p<T extends Tensor>(x: T): T;
sqrt<T extends Tensor>(x: T): T;
rsqrt<T extends Tensor>(x: T): T;
square<T extends Tensor>(x: T): T;
reciprocal<T extends Tensor>(x: T): T;
relu<T extends Tensor>(x: T): T;
prelu<T extends Tensor>(x: T, a: T): T;
elu<T extends Tensor>(x: T): T;
eluDer<T extends Tensor>(dy: T, y: T): T;
selu<T extends Tensor>(x: T): T;
int<T extends Tensor>(x: T): T;
clip<T extends Tensor>(x: T, min: number, max: number): T;
abs<T extends Tensor>(x: T): T;
complexAbs<T extends Tensor>(x: T): T;
sigmoid<T extends Tensor>(x: T): T;
softplus<T extends Tensor>(x: T): T;
sin<T extends Tensor>(x: T): T;
cos<T extends Tensor>(x: T): T;
tan<T extends Tensor>(x: T): T;
asin<T extends Tensor>(x: T): T;
acos<T extends Tensor>(x: T): T;
atan<T extends Tensor>(x: T): T;
atan2<T extends Tensor>(a: T, b: T): T;
sinh<T extends Tensor>(x: T): T;
cosh<T extends Tensor>(x: T): T;
tanh<T extends Tensor>(x: T): T;
asinh<T extends Tensor>(x: T): T;
acosh<T extends Tensor>(x: T): T;
atanh<T extends Tensor>(x: T): T;
erf<T extends Tensor>(x: T): T;
step<T extends Tensor>(x: T, alpha: number): T;
conv2d(x: Tensor4D, filter: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
conv2dDerInput(dy: Tensor4D, filter: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
conv2dDerFilter(x: Tensor4D, dY: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
depthwiseConv2D(input: Tensor4D, filter: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
depthwiseConv2DDerInput(dy: Tensor4D, filter: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
depthwiseConv2DDerFilter(x: Tensor4D, dY: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
conv3d(x: Tensor5D, filter: Tensor5D, convInfo: Conv3DInfo): Tensor5D;
conv3dDerInput(dy: Tensor5D, filter: Tensor5D, convInfo: Conv3DInfo): Tensor5D;
conv3dDerFilter(x: Tensor5D, dY: Tensor5D, convInfo: Conv3DInfo): Tensor5D;
maxPool(x: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
maxPoolBackprop(dy: Tensor4D, x: Tensor4D, y: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
avgPool(x: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
avgPoolBackprop(dy: Tensor4D, x: Tensor4D, convInfo: Conv2DInfo): Tensor4D;
reshape<T extends Tensor, R extends Rank>(x: T, shape: ShapeMap[R]): Tensor<R>;
cast<T extends Tensor>(x: T, dtype: DataType): T;
tile<T extends Tensor>(x: T, reps: number[]): T;
pad<T extends Tensor>(x: T, paddings: Array<[number, number]>, constantValue: number): T;
transpose<T extends Tensor>(x: T, perm: number[]): T;
gather<T extends Tensor>(x: T, indices: Tensor1D, axis: number): T;
gatherND(x: Tensor, indices: Tensor): Tensor;
scatterND<R extends Rank>(indices: Tensor, updates: Tensor, shape: ShapeMap[R]): Tensor<R>;
batchToSpaceND<T extends Tensor>(x: T, blockShape: number[], crops: number[][]): T;
spaceToBatchND<T extends Tensor>(x: T, blockShape: number[], paddings: number[][]): T;
resizeBilinear(x: Tensor4D, newHeight: number, newWidth: number, alignCorners: boolean): Tensor4D;
resizeBilinearBackprop(dy: Tensor4D, x: Tensor4D, alignCorners: boolean): Tensor4D;
resizeNearestNeighbor(x: Tensor4D, newHEight: number, newWidth: number, alignCorners: boolean): Tensor4D;
resizeNearestNeighborBackprop(dy: Tensor4D, x: Tensor4D, alignCorners: boolean): Tensor4D;
batchNormalization(x: Tensor4D, mean: Tensor4D | Tensor1D, variance: Tensor4D | Tensor1D, varianceEpsilon: number, scale?: Tensor4D | Tensor1D, offset?: Tensor4D | Tensor1D): Tensor4D;
localResponseNormalization4D(x: Tensor4D, radius: number, bias: number, alpha: number, beta: number): Tensor4D;
LRNGrad(dy: Tensor4D, inputImage: Tensor4D, outputImage: Tensor4D, radius: number, bias: number, alpha: number, beta: number): Tensor4D;
multinomial(logits: Tensor2D, normalized: boolean, numSamples: number, seed: number): Tensor2D;
oneHot(indices: Tensor1D, depth: number, onValue: number, offValue: number): Tensor2D;
cumsum(x: Tensor, axis: number, exclusive: boolean, reverse: boolean): Tensor;
nonMaxSuppression(boxes: Tensor2D, scores: Tensor1D, maxOutputSize: number, iouThreshold: number, scoreThreshold?: number): Tensor1D;
fft(x: Tensor2D): Tensor2D;
ifft(x: Tensor2D): Tensor2D;
complex<T extends Tensor>(real: T, imag: T): T;
real<T extends Tensor>(input: T): T;
imag<T extends Tensor>(input: T): T;
cropAndResize(image: Tensor4D, boxes: Tensor2D, boxIndex: Tensor1D, cropSize: [number, number], method: 'bilinear' | 'nearest', extrapolationValue: number): Tensor4D;
depthToSpace(x: Tensor4D, blockSize: number, dataFormat: string): Tensor4D;
split<T extends Tensor>(value: T, sizeSplits: number[], axis: number): T[];
sparseToDense<R extends Rank>(sparseIndices: Tensor, sparseValues: Tensor, outputShape: ShapeMap[R], defaultValue: Scalar): Tensor<R>;
fill<R extends Rank>(shape: ShapeMap[R], value: number | string, dtype?: DataType): Tensor<R>;
/**
* Sets the data mover for this backend. Backends should use the mover to
* move data from other backends to this backend.
*/
setDataMover(dataMover: DataMover): void;
dispose(): void;
}