@tensorflow-models/coco-ssd
Version:
Object detection model (coco-ssd) in TensorFlow.js
307 lines • 12.3 kB
JavaScript
;
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
Object.defineProperty(exports, "__esModule", { value: true });
var environment_1 = require("./environment");
var tensor_1 = require("./tensor");
var util = require("./util");
/**
* Create a new gradient scope. Similar to scope, but forces all inner scopes
* to not clean up so that gradient operations can be used inside of this
* scope.
* @param nameOrScopeFn The name of the scope, or the function to execute.
* If a name is provided, the 2nd argument should be the function.
* If a name is provided, and debug mode is on, the timing and the memory
* usage of the function will be tracked and displayed on the console
* using the provided name.
* @param scopeFn The function to execute.
*/
function gradScope(nameOrScopeFn, scopeFn) {
return environment_1.ENV.engine.tidy(nameOrScopeFn, scopeFn, true /* gradScope */);
}
exports.gradScope = gradScope;
/**
* Provided `f(x)`, returns another function `g(x, dy?)`, which gives the
* gradient of `f(x)` with respect to `x`.
*
* If `dy` is provided, the gradient of `f(x).mul(dy).sum()` with respect to
* `x` is computed instead. `f(x)` must take a single tensor `x` and return a
* single tensor `y`. If `f()` takes multiple inputs, use `tf.grads` instead.
*
* ```js
* // f(x) = x ^ 2
* const f = x => x.square();
* // f'(x) = 2x
* const g = tf.grad(f);
*
* const x = tf.tensor1d([2, 3]);
* g(x).print();
* ```
*
* ```js
* // f(x) = x ^ 3
* const f = x => x.pow(tf.scalar(3, 'int32'));
* // f'(x) = 3x ^ 2
* const g = tf.grad(f);
* // f''(x) = 6x
* const gg = tf.grad(g);
*
* const x = tf.tensor1d([2, 3]);
* gg(x).print();
* ```
*
* @param f The function f(x), to compute gradient for.
*/
/** @doc {heading: 'Training', subheading: 'Gradients'} */
function grad(f) {
util.assert(util.isFunction(f), 'The f passed in grad(f) must be a function');
return function (x, dy) {
util.assert(x instanceof tensor_1.Tensor, 'The x passed in grad(f)(x) must be a tensor');
util.assert(dy == null || dy instanceof tensor_1.Tensor, 'The dy passed in grad(f)(x, dy) must be a tensor');
return environment_1.ENV.engine.tidy(function () {
var _a = environment_1.ENV.engine.gradients(function () { return f(x); }, [x], dy), value = _a.value, grads = _a.grads;
if (dy != null) {
util.assertShapesMatch(value.shape, dy.shape, 'The shape of dy passed in grad(f)(x, dy) must match the shape ' +
'returned by f(x)');
}
checkGrads(grads);
return grads[0];
});
};
}
exports.grad = grad;
/**
* Provided `f(x1, x2,...)`, returns another function `g([x1, x2,...], dy?)`,
* which gives an array of gradients of `f()` with respect to each input
* [`x1`,`x2`,...].
*
* If `dy` is passed when calling `g()`, the gradient of
* `f(x1,...).mul(dy).sum()` with respect to each input is computed instead.
* The provided `f` must take one or more tensors and return a single tensor
* `y`. If `f()` takes a single input, we recommend using `tf.grad` instead.
*
* ```js
* // f(a, b) = a * b
* const f = (a, b) => a.mul(b);
* // df / da = b, df / db = a
* const g = tf.grads(f);
*
* const a = tf.tensor1d([2, 3]);
* const b = tf.tensor1d([-2, -3]);
* const [da, db] = g([a, b]);
* console.log('da');
* da.print();
* console.log('db');
* db.print();
* ```
*
* @param f The function `f(x1, x2,...)` to compute gradients for.
*/
/** @doc {heading: 'Training', subheading: 'Gradients'} */
function grads(f) {
util.assert(util.isFunction(f), 'The f passed in grads(f) must be a function');
return function (args, dy) {
util.assert(Array.isArray(args) && args.every(function (arg) { return arg instanceof tensor_1.Tensor; }), 'The args passed in grads(f)(args) must be an array of tensors');
util.assert(dy == null || dy instanceof tensor_1.Tensor, 'The dy passed in grads(f)(args, dy) must be a tensor');
return environment_1.ENV.engine.tidy(function () {
var _a = environment_1.ENV.engine.gradients(function () { return f.apply(void 0, args); }, args, dy), value = _a.value, grads = _a.grads;
if (dy != null) {
util.assertShapesMatch(value.shape, dy.shape, 'The shape of dy passed in grads(f)([x1,...], dy) must ' +
'match the shape returned by f([x1,...])');
}
checkGrads(grads);
return grads;
});
};
}
exports.grads = grads;
/**
* Like `tf.grad`, but also returns the value of `f()`. Useful when `f()`
* returns a metric you want to show.
*
* The result is a rich object with the following properties:
* - grad: The gradient of `f(x)` w.r.t `x` (result of `tf.grad`).
* - value: The value returned by `f(x)`.
*
* ```js
* // f(x) = x ^ 2
* const f = x => x.square();
* // f'(x) = 2x
* const g = tf.valueAndGrad(f);
*
* const x = tf.tensor1d([2, 3]);
* const {value, grad} = g(x);
*
* console.log('value');
* value.print();
* console.log('grad');
* grad.print();
* ```
*/
/** @doc {heading: 'Training', subheading: 'Gradients'} */
function valueAndGrad(f) {
util.assert(util.isFunction(f), 'The f passed in valueAndGrad(f) must be a function');
return function (x, dy) {
util.assert(x instanceof tensor_1.Tensor, 'The x passed in valueAndGrad(f)(x) must be a tensor');
util.assert(dy == null || dy instanceof tensor_1.Tensor, 'The dy passed in valueAndGrad(f)(x, dy) must be a tensor');
var _a = environment_1.ENV.engine.gradients(function () { return f(x); }, [x], dy), grads = _a.grads, value = _a.value;
checkGrads(grads);
return { grad: grads[0], value: value };
};
}
exports.valueAndGrad = valueAndGrad;
/**
* Like `tf.grads`, but returns also the value of `f()`. Useful when `f()`
* returns a metric you want to show.
*
* The result is a rich object with the following properties:
* - grads: The gradients of `f()` w.r.t each input (result of `tf.grads`).
* - value: The value returned by `f(x)`.
*
* ```js
* // f(a, b) = a * b
* const f = (a, b) => a.mul(b);
* // df/da = b, df/db = a
* const g = tf.valueAndGrads(f);
*
* const a = tf.tensor1d([2, 3]);
* const b = tf.tensor1d([-2, -3]);
* const {value, grads} = g([a, b]);
*
* const [da, db] = grads;
*
* console.log('value');
* value.print();
*
* console.log('da');
* da.print();
* console.log('db');
* db.print();
* ```
*/
/** @doc {heading: 'Training', subheading: 'Gradients'} */
function valueAndGrads(f) {
util.assert(util.isFunction(f), 'The f passed in valueAndGrads(f) must be a function');
return function (args, dy) {
util.assert(Array.isArray(args) && args.every(function (arg) { return arg instanceof tensor_1.Tensor; }), 'The args passed in valueAndGrads(f)(args) must be array of tensors');
util.assert(dy == null || dy instanceof tensor_1.Tensor, 'The dy passed in valueAndGrads(f)(args, dy) must be a tensor');
var res = environment_1.ENV.engine.gradients(function () { return f.apply(void 0, args); }, args, dy);
if (dy != null) {
util.assertShapesMatch(res.value.shape, dy.shape, 'The shape of dy passed in valueAndGrads(f)([x1,...], dy) must ' +
'match the shape returned by f([x1,...])');
}
checkGrads(res.grads);
return res;
};
}
exports.valueAndGrads = valueAndGrads;
/**
* Computes and returns the gradient of f(x) with respect to the list of
* trainable variables provided by `varList`. If no list is provided, it
* defaults to all trainable variables.
*
* ```js
* const a = tf.variable(tf.tensor1d([3, 4]));
* const b = tf.variable(tf.tensor1d([5, 6]));
* const x = tf.tensor1d([1, 2]);
*
* // f(a, b) = a * x ^ 2 + b * x
* const f = () => a.mul(x.square()).add(b.mul(x)).sum();
* // df/da = x ^ 2, df/db = x
* const {value, grads} = tf.variableGrads(f);
*
* Object.keys(grads).forEach(varName => grads[varName].print());
* ```
*
* @param f The function to execute. f() should return a scalar.
* @param varList The list of trainable variables. Defaults to all variables.
*/
/** @doc {heading: 'Training', subheading: 'Gradients'} */
function variableGrads(f, varList) {
util.assert(util.isFunction(f), 'The f passed in variableGrads(f) must be a function');
util.assert(varList == null ||
Array.isArray(varList) && varList.every(function (v) { return v instanceof tensor_1.Variable; }), 'The varList passed in variableGrads(f, varList) must be an array ' +
'of variables');
if (varList == null) {
// Get all of the trainable variables.
varList = [];
for (var varName in environment_1.ENV.engine.registeredVariables) {
varList.push(environment_1.ENV.engine.registeredVariables[varName]);
}
}
// Prune non-trainable variables.
var originalVarCount = varList.length;
varList = varList.filter(function (variable) { return variable.trainable; });
util.assert(varList.length > 0, "variableGrads() expects at least one of the input variables to be " +
("trainable, but none of the " + originalVarCount + " variables is ") +
"trainable.");
var allowNoGradients = true;
var _a = environment_1.ENV.engine.gradients(f, varList, null, allowNoGradients), value = _a.value, grads = _a.grads;
util.assert(grads.some(function (g) { return g != null; }), 'Cannot find a connection between any variable and the result of the ' +
'loss function y=f(x). Please make sure the operations that use ' +
'variables are inside the function f passed to minimize().');
util.assert(value.rank === 0, "The f passed in variableGrads(f) must return a scalar, but it " +
("returned a rank-" + value.rank + " tensor"));
var namedGrads = {};
varList.forEach(function (v, i) {
if (grads[i] != null) {
namedGrads[v.name] = grads[i];
}
});
return { value: value, grads: namedGrads };
}
exports.variableGrads = variableGrads;
/**
* Overrides the gradient computation of a function `f`.
*
* Takes a function
* `f(...inputs) => {value: Tensor, gradFunc: dy => Tensor[]}` and returns
* another function `g(...inputs)` which takes the same inputs as `f`. When
* called, `g` returns `f().value`. In backward mode, custom gradients with
* respect to each input of `f` are computed using `f().gradFunc`.
*
* ```js
* const customOp = tf.customGrad(x => {
* // Override gradient of our custom x ^ 2 op to be dy * abs(x);
* return {value: x.square(), gradFunc: dy => [dy.mul(x.abs())]};
* });
*
* const x = tf.tensor1d([-1, -2, 3]);
* const dx = tf.grad(x => customOp(x));
*
* console.log(`f(x):`);
* customOp(x).print();
* console.log(`f'(x):`);
* dx(x).print();
* ```
*
* @param f The function to evaluate in forward mode, which should return
* `{value: Tensor, gradFunc: (dy) => Tensor[]}`, where `gradFunc` returns
* the custom gradients of `f` with respect to its inputs.
*/
/** @doc {heading: 'Training', subheading: 'Gradients'} */
function customGrad(f) {
return environment_1.ENV.engine.customGrad(f);
}
exports.customGrad = customGrad;
function checkGrads(grads) {
var numNullGradients = grads.filter(function (g) { return g == null; }).length;
if (numNullGradients > 0) {
throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that\n the f you passed encloses all operations that lead from x to y.");
}
}
//# sourceMappingURL=gradients.js.map