UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

641 lines 28.3 kB
"use strict"; /** * @license * Copyright 2017 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var _this = this; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("./index"); var jasmine_util_1 = require("./jasmine_util"); var backend_cpu_1 = require("./kernels/backend_cpu"); var backend_webgl_1 = require("./kernels/backend_webgl"); var test_util_1 = require("./test_util"); jasmine_util_1.describeWithFlags('fromPixels + regular math op', test_util_1.WEBGL_ENVS, function () { it('debug mode does not error when no nans', function () { var pixels = new ImageData(2, 2); for (var i = 0; i < 8; i++) { pixels.data[i] = 100; } for (var i = 8; i < 16; i++) { pixels.data[i] = 250; } var a = tf.browser.fromPixels(pixels, 4); var b = tf.scalar(20, 'int32'); var res = tf.add(a, b); test_util_1.expectArraysEqual(res, [ 120, 120, 120, 120, 120, 120, 120, 120, 270, 270, 270, 270, 270, 270, 270, 270 ]); }); }); jasmine_util_1.describeWithFlags('gradients', test_util_1.ALL_ENVS, function () { it('matmul + relu', function () { var a = tf.tensor2d([-1, 2, -3, 10, -20, 30], [2, 3]); var b = tf.tensor2d([2, -3, 4, -1, 2, -3], [3, 2]); var _a = tf.grads(function (a, b) { // m = dot(a, b) // y = relu(m) // e = sum(y) var m = tf.matMul(a, b); var y = tf.relu(m); return tf.sum(y); })([a, b]), da = _a[0], db = _a[1]; // de/dy = 1 // dy/dm = step(m) // de/dm = de/dy * dy/dm = step(m) var dedm = tf.step(tf.matMul(a, b)); // de/da = dot(de/dy, bT) expect(da.shape).toEqual(a.shape); var transposeA = false; var transposeB = true; test_util_1.expectArraysClose(da, tf.matMul(dedm, b, transposeA, transposeB)); // de/db = dot(aT, de/dy) expect(db.shape).toEqual(b.shape); transposeA = true; transposeB = false; test_util_1.expectArraysClose(db, tf.matMul(a, dedm, transposeA, transposeB)); }); it('grad(f)', function () { var grad = tf.grad(function (x) { return x.square(); }); var result = grad(tf.tensor1d([.1, .2])); test_util_1.expectArraysClose(result, [.2, .4]); }); it('calling grad(f) twice works', function () { var grad = tf.grad(function (x) { return x.square(); }); var result = grad(tf.tensor1d([.1, .2])); var result2 = grad(tf.tensor1d([.1, .4])); test_util_1.expectArraysClose(result, [.2, .4]); test_util_1.expectArraysClose(result2, [.2, .8]); }); it('grads(f)', function () { var grads = tf.grads(function (x) { return x.square(); }); var result = grads([tf.tensor1d([.1, .2])]); test_util_1.expectArraysClose(result[0], [.2, .4]); }); it('calling grads(f) twice works', function () { var grads = tf.grads(function (x) { return x.square(); }); var result = grads([tf.tensor1d([.1, .2])]); var result2 = grads([tf.tensor1d([.1, .4])]); test_util_1.expectArraysClose(result[0], [.2, .4]); test_util_1.expectArraysClose(result2[0], [.2, .8]); }); it('works with reshape', function () { var a = tf.tensor2d([1, 2, 3, 4], [2, 2]); var exponent = tf.tensor1d([2, 2, 2, 2], 'int32'); var da = tf.grad(function (a) { var b = a.flatten(); var m = tf.pow(b, exponent); return tf.sum(m); })(a); expect(da.shape).toEqual([2, 2]); test_util_1.expectArraysClose(da, [2, 4, 6, 8]); }); it('reshape outside tf.grads() throws error', function () { var a = tf.tensor2d([1, 2, 3, 4], [2, 2]); var b = a.flatten(); var exponent = tf.tensor1d([2, 2, 2, 2], 'int32'); var f = function () { tf.grads(function (a, b) { var m = tf.pow(b, exponent); return tf.sum(m); })([a, b]); }; expect(f).toThrowError(); }); it('does not error if irrelevant (pruned) ops are missing grads', function () { var a = tf.tensor1d([true, true], 'bool'); var b = tf.tensor1d([false, true], 'bool'); var da = tf.grad(function (a) { // Logical has no gradients, but it is irrelevant. a.logicalAnd(b); return a.sum(); })(a); test_util_1.expectArraysClose(da, [1, 1]); }); it('errors if relevant ops are missing grads', function () { var a = tf.tensor1d([true, true], 'bool'); var b = tf.tensor1d([false, true], 'bool'); var dfda = tf.grad(function (a) { // Logical has no gradients, but it's relevant to the output. return a.logicalAnd(b); }); expect(function () { return dfda(a); }).toThrowError(); }); it('works with asType', function () { var a = tf.tensor2d([1, 2, 3, 4], [2, 2], 'int32'); var exponent = tf.tensor2d([2, 2, 2, 2], [2, 2], 'int32'); var da = tf.grad(function (a) { var b = a.toFloat(); var m = tf.pow(b, exponent); return tf.sum(m); })(a); expect(da.shape).toEqual([2, 2]); expect(da.dtype).toEqual('float32'); test_util_1.expectArraysClose(da, [2, 4, 6, 8]); }); it('asType outside of tf.grads() throws error', function () { var a = tf.tensor2d([1, 2, 3, 4], [2, 2], 'int32'); var b = a.toFloat(); var exponent = tf.tensor2d([2, 2, 2, 2], [2, 2], 'int32'); var f = function () { tf.grad(function (a) { var m = tf.pow(b, exponent); return tf.sum(m); })(a); }; expect(f).toThrowError(); }); }); jasmine_util_1.describeWithFlags('valueAndGradients', test_util_1.ALL_ENVS, function () { it('matmul + relu', function () { var a = tf.tensor2d([-1, 2, -3, 10, -20, 30], [2, 3]); var b = tf.tensor2d([2, -3, 4, -1, 2, -3], [3, 2]); var _a = tf.valueAndGrads(function (a, b) { // m = dot(a, b) // y = relu(m) // e = sum(y) var m = tf.matMul(a, b); var y = tf.relu(m); return tf.sum(y); })([a, b]), value = _a.value, grads = _a.grads; test_util_1.expectArraysClose(value, 10); // de/dy = 1 // dy/dm = step(m) // de/dm = de/dy * dy/dm = step(m) var dedm = tf.step(tf.matMul(a, b)); var da = grads[0], db = grads[1]; // de/da = dot(de/dy, bT) var transposeA = false; var transposeB = true; test_util_1.expectArraysClose(da, tf.matMul(dedm, b, transposeA, transposeB)); // de/db = dot(aT, de/dy) transposeA = true; transposeB = false; test_util_1.expectArraysClose(db, tf.matMul(a, dedm, transposeA, transposeB)); }); it('matmul + relu + inner tidy', function () { var a = tf.tensor2d([-1, 2, -3, 10, -20, 30], [2, 3]); var b = tf.tensor2d([2, -3, 4, -1, 2, -3], [3, 2]); var _a = tf.valueAndGrads(function (a, b) { // m = dot(a, b) // y = relu(m) // e = sum(y) var m = tf.matMul(a, b); return tf.tidy(function () { var y = tf.relu(m); return tf.sum(y); }); })([a, b]), value = _a.value, grads = _a.grads; test_util_1.expectArraysClose(value, 10); // de/dy = 1 // dy/dm = step(m) // de/dm = de/dy * dy/dm = step(m) var dedm = tf.step(tf.matMul(a, b)); var da = grads[0], db = grads[1]; // de/da = dot(de/dy, bT) var transposeA = false; var transposeB = true; test_util_1.expectArraysClose(da, tf.matMul(dedm, b, transposeA, transposeB)); // de/db = dot(aT, de/dy) transposeA = true; transposeB = false; test_util_1.expectArraysClose(db, tf.matMul(a, dedm, transposeA, transposeB)); }); }); jasmine_util_1.describeWithFlags('higher-order gradients', test_util_1.ALL_ENVS, function () { it('grad(grad(f))', function () { var gradgrad = tf.grad(tf.grad(function (x) { return x.mul(x).mul(x); })); var result = gradgrad(tf.tensor1d([.1, .2])); test_util_1.expectArraysClose(result, [.6, 1.2]); }); it('grads(grads(f))', function () { var grads = tf.grads(function (x) { return x.mul(x).mul(x); }); var gradsgrads = tf.grads(function (x) { return grads([x])[0]; }); var result = gradsgrads([tf.tensor1d([.1, .2])]); test_util_1.expectArraysClose(result[0], [.6, 1.2]); }); }); jasmine_util_1.describeWithFlags('customGradient', test_util_1.ALL_ENVS, function () { it('basic', function () { var a = tf.scalar(3); var b = tf.scalar(2, 'int32'); var dy = tf.scalar(4); var customPow = tf.customGrad(function (a) { var value = tf.pow(a, b); var gradFunc = function (dy) { return dy.mul(tf.scalar(0.1)); }; return { value: value, gradFunc: gradFunc }; }); var _a = tf.valueAndGrad(function (a) { return customPow(a); })(a, dy), value = _a.value, grad = _a.grad; expect(value.shape).toEqual(a.shape); test_util_1.expectArraysClose(value, [9]); expect(grad.shape).toEqual(a.shape); test_util_1.expectArraysClose(grad, [.4]); }); it('second order derivative through customGradient', function () { var a = tf.scalar(3); var b = tf.scalar(2, 'int32'); var dy = tf.scalar(5); var customPow = tf.customGrad(function (a) { var value = tf.pow(a, b); var gradFunc = function (dy) { return dy.mul(a); }; return { value: value, gradFunc: gradFunc }; }); var dda = tf.grad(tf.grad(function (a) { return customPow(a); }))(a, dy); expect(dda.shape).toEqual(a.shape); // First order: dy * a. Second order: dy. test_util_1.expectArraysClose(dda, dy); }); it('calling gradient of custom op twice works', function () { var customOp = tf.customGrad(function (x) { // Override gradient of our custom x ^ 2 op to be dy * abs(x); return { value: x.square(), gradFunc: function (dy) { return dy.mul(x.abs()); } }; }); var x = tf.tensor1d([-1, -2, 3]); var grad = tf.grad(function (x) { return customOp(x); }); test_util_1.expectArraysClose(grad(x), [1, 2, 3]); test_util_1.expectArraysClose(grad(x), [1, 2, 3]); }); }); jasmine_util_1.describeWithFlags('memory', test_util_1.ALL_ENVS, function () { it('Sum(float)', function () { expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numBytes).toBe(0); var sum = tf.tidy(function () { var a = tf.tensor1d([1, 2, 3, 4]); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4 * 4); return a.sum(); }); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); test_util_1.expectArraysClose(sum, [1 + 2 + 3 + 4]); }); it('Sum(bool)', function () { var sum = tf.tidy(function () { var a = tf.tensor1d([true, true, false, true], 'bool'); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); return a.sum(); }); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); expect(sum.dtype).toBe('int32'); test_util_1.expectArraysClose(sum, [1 + 1 + 0 + 1]); }); it('Sum(int32)', function () { var sum = tf.tidy(function () { var a = tf.tensor1d([1, 1, 0, 1], 'int32'); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4 * 4); return a.sum(); }); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(4); expect(sum.dtype).toBe('int32'); test_util_1.expectArraysClose(sum, [1 + 1 + 0 + 1]); }); it('string tensor', function () { var a = tf.tensor([['a', 'bb'], ['c', 'd']]); expect(tf.memory().numTensors).toBe(1); expect(tf.memory().numBytes).toBe(10); // 5 letters, each 2 bytes. a.dispose(); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numBytes).toBe(0); }); it('unreliable is true for string tensors', function () { tf.tensor('a'); var mem = tf.memory(); expect(mem.unreliable).toBe(true); var expectedReason = 'Memory usage by string tensors is approximate ' + '(2 bytes per character)'; expect(mem.reasons.indexOf(expectedReason) >= 0).toBe(true); }); }); jasmine_util_1.describeWithFlags('memory webgl', test_util_1.WEBGL_ENVS, function () { it('unreliable is falsy/not present when all tensors are numeric', function () { tf.tensor(1); var mem = tf.memory(); expect(mem.numTensors).toBe(1); expect(mem.numDataBuffers).toBe(1); expect(mem.numBytes).toBe(4); expect(mem.unreliable).toBeFalsy(); }); }); jasmine_util_1.describeWithFlags('memory cpu', test_util_1.CPU_ENVS, function () { it('unreliable is true due to auto gc', function () { tf.tensor(1); var mem = tf.memory(); expect(mem.numTensors).toBe(1); expect(mem.numDataBuffers).toBe(1); expect(mem.numBytes).toBe(4); expect(mem.unreliable).toBe(true); var expectedReason = 'The reported memory is an upper bound. Due to automatic garbage ' + 'collection, the true allocated memory may be less.'; expect(mem.reasons.indexOf(expectedReason) >= 0).toBe(true); }); it('unreliable is true due to both auto gc and string tensors', function () { tf.tensor(1); tf.tensor('a'); var mem = tf.memory(); expect(mem.numTensors).toBe(2); expect(mem.numDataBuffers).toBe(2); expect(mem.numBytes).toBe(6); expect(mem.unreliable).toBe(true); var expectedReasonGC = 'The reported memory is an upper bound. Due to automatic garbage ' + 'collection, the true allocated memory may be less.'; expect(mem.reasons.indexOf(expectedReasonGC) >= 0).toBe(true); var expectedReasonString = 'Memory usage by string tensors is approximate ' + '(2 bytes per character)'; expect(mem.reasons.indexOf(expectedReasonString) >= 0).toBe(true); }); }); jasmine_util_1.describeWithFlags('profile', test_util_1.ALL_ENVS, function () { it('squaring', function () { return __awaiter(_this, void 0, void 0, function () { var profile, result; return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.profile(function () { var x = tf.tensor1d([1, 2, 3]); var x2 = x.square(); x2.dispose(); x2 = x.square(); x2.dispose(); return x; })]; case 1: profile = _a.sent(); result = profile.result; expect(profile.newBytes).toBe(12); expect(profile.peakBytes).toBe(24); expect(profile.newTensors).toBe(1); test_util_1.expectArraysClose(result, [1, 2, 3]); expect(profile.kernels).toEqual([ { 'name': 'square', 'bytesAdded': 12, 'totalBytesSnapshot': 24, 'tensorsAdded': 1, 'totalTensorsSnapshot': 2, 'inputShapes': [[3]], 'outputShape': [3] }, { 'name': 'square', 'bytesAdded': 12, 'totalBytesSnapshot': 24, 'tensorsAdded': 1, 'totalTensorsSnapshot': 2, 'inputShapes': [[3]], 'outputShape': [3] } ]); return [2 /*return*/]; } }); }); }); it('squaring without disposing', function () { return __awaiter(_this, void 0, void 0, function () { var profile, result; return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, tf.profile(function () { var x = tf.tensor1d([1, 2, 3]); var x2 = x.square(); return x2; })]; case 1: profile = _a.sent(); result = profile.result; expect(profile.newBytes).toBe(24); expect(profile.peakBytes).toBe(24); expect(profile.newTensors).toBe(2); test_util_1.expectArraysClose(result, [1, 4, 9]); expect(profile.kernels).toEqual([{ 'name': 'square', 'bytesAdded': 12, 'totalBytesSnapshot': 24, 'tensorsAdded': 1, 'totalTensorsSnapshot': 2, 'inputShapes': [[3]], 'outputShape': [3] }]); return [2 /*return*/]; } }); }); }); }); jasmine_util_1.describeWithFlags('disposeVariables', test_util_1.ALL_ENVS, function () { it('reuse same name variable', function () { tf.tensor1d([1, 2, 3]).variable(true, 'v1'); tf.tensor1d([1, 2, 3]).variable(true, 'v2'); expect(function () { tf.tensor1d([1, 2, 3]).variable(true, 'v1'); }).toThrowError(); tf.disposeVariables(); tf.tensor1d([1, 2, 3]).variable(true, 'v1'); tf.tensor1d([1, 2, 3]).variable(true, 'v2'); }); }); describe('Switching cpu backends', function () { beforeEach(function () { tf.ENV.registerBackend('cpu1', function () { return new backend_cpu_1.MathBackendCPU(); }); tf.ENV.registerBackend('cpu2', function () { return new backend_cpu_1.MathBackendCPU(); }); }); afterEach(function () { tf.ENV.removeBackend('cpu1'); tf.ENV.removeBackend('cpu2'); }); it('Move data from cpu1 to cpu2 backend', function () { tf.setBackend('cpu1'); // This scalar lives in cpu1. var a = tf.scalar(5); tf.setBackend('cpu2'); // This scalar lives in cpu2. var b = tf.scalar(3); expect(tf.memory().numDataBuffers).toBe(2); expect(tf.memory().numTensors).toBe(2); expect(tf.memory().numBytes).toBe(8); // Make sure you can read both tensors. test_util_1.expectArraysClose(a, [5]); test_util_1.expectArraysClose(b, [3]); // Switch back to cpu1. tf.setBackend('cpu1'); // Again make sure you can read both tensors. test_util_1.expectArraysClose(a, [5]); test_util_1.expectArraysClose(b, [3]); tf.dispose([a, b]); expect(tf.memory().numDataBuffers).toBe(0); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numBytes).toBe(0); }); it('can execute op with data from mixed backends', function () { tf.setBackend('cpu1'); // This scalar lives in cpu1. var a = tf.scalar(5); tf.setBackend('cpu2'); // This scalar lives in cpu2. var b = tf.scalar(3); // Verify that ops can execute with mixed backend data. tf.tidy(function () { tf.setBackend('cpu1'); test_util_1.expectArraysClose(tf.add(a, b), [8]); tf.setBackend('cpu2'); test_util_1.expectArraysClose(tf.add(a, b), [8]); }); expect(tf.memory().numTensors).toBe(2); expect(tf.memory().numDataBuffers).toBe(2); tf.dispose([a, b]); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numDataBuffers).toBe(0); }); }); // We do not yet fully support half float backends. These tests are a starting // point. jasmine_util_1.describeWithFlags('backend without render float32 support', test_util_1.WEBGL_ENVS, function () { var savedRenderFloat32Flag = tf.ENV.get('WEBGL_RENDER_FLOAT32_ENABLED'); beforeAll(function () { tf.ENV.set('WEBGL_RENDER_FLOAT32_ENABLED', false); }); beforeEach(function () { tf.ENV.registerBackend('half-float-webgl', function () { return new backend_webgl_1.MathBackendWebGL(null); }); }); afterEach(function () { tf.ENV.removeBackend('half-float-webgl'); }); afterAll(function () { tf.ENV.set('WEBGL_RENDER_FLOAT32_ENABLED', savedRenderFloat32Flag); }); it('basic usage', function () { tf.setBackend('half-float-webgl'); var a = tf.tensor2d([1, 2], [1, 2]); var b = tf.tensor2d([1, 2], [1, 2]); var c = tf.add(a, b); test_util_1.expectArraysClose(c, [2, 4]); }); it('disposing tensors should not cause errors', function () { tf.setBackend('half-float-webgl'); expect(function () { return tf.tidy(function () { var a = tf.tensor2d([1, 2], [1, 2]); var b = tf.tensor2d([1, 2], [1, 2]); var c = tf.add(a, b); c.dataSync(); return c.add(tf.tensor2d([2, 4], [1, 2])); }); }).not.toThrowError(); }); }); jasmine_util_1.describeWithFlags('Switching WebGL + CPU backends', test_util_1.WEBGL_ENVS, function () { beforeEach(function () { tf.ENV.registerBackend('webgl1', function () { return new backend_webgl_1.MathBackendWebGL(); }); tf.ENV.registerBackend('webgl2', function () { return new backend_webgl_1.MathBackendWebGL(); }); tf.ENV.registerBackend('cpu1', function () { return new backend_cpu_1.MathBackendCPU(); }); }); afterEach(function () { tf.ENV.removeBackend('webgl1'); tf.ENV.removeBackend('webgl2'); tf.ENV.removeBackend('cpu1'); }); it('can execute op with data from mixed backends', function () { tf.setBackend('webgl1'); var a = tf.scalar(5); tf.setBackend('webgl2'); var b = tf.scalar(3); tf.setBackend('cpu1'); var c = tf.scalar(2); // Verify that ops can execute with mixed backend data. tf.tidy(function () { tf.setBackend('webgl1'); test_util_1.expectArraysClose(tf.addN([a, b, c]), [10]); tf.setBackend('webgl2'); test_util_1.expectArraysClose(tf.addN([a, b, c]), [10]); tf.setBackend('cpu1'); test_util_1.expectArraysClose(tf.addN([a, b, c]), [10]); }); expect(tf.memory().numTensors).toBe(3); expect(tf.memory().numDataBuffers).toBe(3); tf.dispose([a, b, c]); expect(tf.memory().numTensors).toBe(0); expect(tf.memory().numDataBuffers).toBe(0); }); it('fromPixels with mixed backends works', function () { tf.setBackend('webgl1'); var a = tf.browser.fromPixels(new ImageData(new Uint8ClampedArray([1, 2, 3, 4]), 1, 1)); tf.setBackend('webgl2'); var b = tf.browser.fromPixels(new ImageData(new Uint8ClampedArray([5, 6, 7, 8]), 1, 1)); test_util_1.expectArraysClose(tf.add(a, b), [6, 8, 10]); }); it('single tidy multiple backends', function () { expect(tf.memory().numTensors).toBe(0); tf.tidy(function () { tf.setBackend('webgl1'); var a = tf.scalar(1); a.square(); // Uploads to GPU. tf.setBackend('webgl2'); var b = tf.scalar(1); b.square(); // Uploads to GPU. expect(tf.memory().numTensors).toBe(4); }); expect(tf.memory().numTensors).toBe(0); }); }); // NOTE: This describe is purposefully not a describeWithFlags so that we test // tensor allocation where no scopes have been created. The backend here must be // set to CPU because we cannot allocate GPU tensors outside a // describeWithFlags because the default webgl backend and the test backends // share a WebGLContext. When backends get registered, global WebGL state is // initialized, which causes the two backends to step on each other and get in a // bad state. describe('Memory allocation outside a test scope', function () { it('constructing a tensor works', function () { tf.setBackend('cpu'); var a = tf.tensor1d([1, 2, 3]); test_util_1.expectArraysClose(a, [1, 2, 3]); a.dispose(); }); }); //# sourceMappingURL=engine_test.js.map