UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

536 lines 23.5 kB
"use strict"; /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); var profiler_1 = require("./profiler"); var tape_1 = require("./tape"); var tensor_1 = require("./tensor"); var tensor_util_1 = require("./tensor_util"); var util = require("./util"); var util_1 = require("./util"); var Engine = /** @class */ (function () { function Engine(backend, safeMode, debugMode) { this.backend = backend; this.safeMode = safeMode; this.debugMode = debugMode; // Public since optimizers will use it. this.registeredVariables = {}; this.nextTapeNodeId = 0; this.numBytes = 0; this.numTensors = 0; this.numStringTensors = 0; this.numDataBuffers = 0; this.profiling = false; this.gradientScopeCount = 0; this.customGradientDepth = 0; this.scopeStack = []; this.keepTensors = new Set(); this.tensorInfo = new WeakMap(); this.profiler = new profiler_1.Profiler(backend); this.activeProfile = { newBytes: 0, newTensors: 0, peakBytes: 0, kernels: [], result: null }; } Engine.prototype.moveData = function (dataId) { this.write(dataId, this.readSync(dataId)); }; Engine.prototype.tidy = function (nameOrFn, fn, gradMode) { // gradMode Primarily for internal use during backprop // If true, will start a tape if it is the outermost tidy. var _this = this; if (gradMode === void 0) { gradMode = false; } var name = null; if (fn == null) { // Called with only 1 argument. if (typeof nameOrFn !== 'function') { throw new Error('Please provide a function to tidy()'); } fn = nameOrFn; } else { // Called with 2 arguments. if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) { throw new Error('When calling with two arguments, the first argument ' + 'to tidy() must be a string'); } if (typeof fn !== 'function') { throw new Error('When calling with two arguments, the 2nd argument ' + 'to tidy() must be a function'); } name = nameOrFn; // TODO(nsthorat,smilkov): Do operation logging and performance // profiling. } var result; return this.scopedRun(function () { return _this.startScope(name, gradMode); }, function () { return _this.endScope(result, gradMode); }, function () { result = fn(); if (result instanceof Promise) { console.error('Cannot return a Promise inside of tidy.'); } return result; }); }; Engine.prototype.scopedRun = function (start, end, f) { start(); try { var res = f(); end(); return res; } catch (ex) { end(); throw ex; } }; Engine.prototype.nextTensorId = function () { return Engine.nextTensorId++; }; Engine.prototype.nextVariableId = function () { return Engine.nextVariableId++; }; Engine.prototype.runKernel = function (forwardFunc, inputs, backwardsFunc) { var _this = this; var result; var saved = []; var saveFunc = function (x) { saved.push(x); return x; }; var scopeName = this.activeScope != null ? this.activeScope.name : ''; var startingBytecount = this.numBytes; var startingNumTensors = this.numTensors; // Stop recording to a tape when running a kernel. this.scopedRun(function () { return _this.customGradientDepth++; }, function () { return _this.customGradientDepth--; }, function () { if (!_this.debugMode()) { result = forwardFunc(_this.backend, saveFunc); } else { result = _this.profiler.profileKernel(scopeName, function () { return forwardFunc(_this.backend, saveFunc); }); } }); if (this.shouldRecord()) { var tapeNode = { id: this.nextTapeNodeId++, name: scopeName, inputs: inputs, outputs: Array.isArray(result) ? result : [result] }; if (backwardsFunc != null) { tapeNode.gradient = (function (dy) { return backwardsFunc(dy, saved); }); } this.activeTape.push(tapeNode); } if (this.profiling) { this.activeProfile.kernels.push({ name: scopeName, bytesAdded: this.numBytes - startingBytecount, totalBytesSnapshot: this.numBytes, tensorsAdded: this.numTensors - startingNumTensors, totalTensorsSnapshot: this.numTensors, inputShapes: Object.keys(inputs).map(function (key) { return inputs[key].shape; }), outputShape: Array.isArray(result) ? result.map(function (item) { return item.shape; }) : result.shape }); } return result; }; // TensorManager implementation. Engine.prototype.registerTensor = function (a, backend) { var refCount = this.tensorInfo.has(a.dataId) ? this.tensorInfo.get(a.dataId).refCount : 0; this.numTensors++; if (a.dtype === 'string') { this.numStringTensors++; } if (refCount === 0) { this.numDataBuffers++; // Bytes for complex numbers are counted by their components. Bytes for // string tensors are counted when writing values. var bytes = 0; if (a.dtype !== 'complex64' && a.dtype !== 'string') { bytes = util.sizeFromShape(a.shape) * util.bytesPerElement(a.dtype); } this.tensorInfo.set(a.dataId, { backend: backend != null ? backend : this.backend, dtype: a.dtype, shape: a.shape, bytes: bytes, refCount: 0 }); this.numBytes += bytes; if (backend != null) { backend.register(a.dataId, a.shape, a.dtype); } else { this.backend.register(a.dataId, a.shape, a.dtype); } } this.tensorInfo.get(a.dataId).refCount++; if (!(a instanceof tensor_1.Variable)) { this.track(a); } }; Engine.prototype.registerVariable = function (v) { if (this.registeredVariables[v.name] != null) { throw new Error("Variable with name " + v.name + " was already registered"); } this.registeredVariables[v.name] = v; }; Engine.prototype.disposeTensor = function (a) { if (!this.tensorInfo.has(a.dataId)) { return; } if (this.keepTensors.has(a.id)) { this.keepTensors.delete(a.id); } this.numTensors--; if (a.dtype === 'string') { this.numStringTensors--; } var info = this.tensorInfo.get(a.dataId); var refCount = info.refCount; if (refCount <= 1) { // Don't count bytes for complex numbers as they are counted by their // components. if (a.dtype !== 'complex64') { this.numBytes -= info.bytes; } this.numDataBuffers--; info.backend.disposeData(a.dataId); this.tensorInfo.delete(a.dataId); } else { this.tensorInfo.get(a.dataId).refCount--; } // TODO(nsthorat): Construct an error and save the stack trace for // debugging when in debug mode. Creating a stack trace is too expensive // to do unconditionally. }; Engine.prototype.disposeVariables = function () { for (var varName in this.registeredVariables) { var v = this.registeredVariables[varName]; this.disposeTensor(v); delete this.registeredVariables[varName]; } }; Engine.prototype.memory = function () { var info = this.backend.memory(); info.numTensors = this.numTensors; info.numDataBuffers = this.numDataBuffers; info.numBytes = this.numBytes; if (this.numStringTensors > 0) { info.unreliable = true; if (info.reasons == null) { info.reasons = []; } info.reasons.push('Memory usage by string tensors is approximate ' + '(2 bytes per character)'); } return info; }; Engine.prototype.profile = function (query) { return __awaiter(this, void 0, void 0, function () { var startBytes, startNumTensors; return __generator(this, function (_a) { this.profiling = true; startBytes = this.numBytes; startNumTensors = this.numTensors; this.activeProfile.kernels = []; this.activeProfile.result = query(); this.profiling = false; this.activeProfile.peakBytes = Math.max.apply(Math, this.activeProfile.kernels.map(function (d) { return d.totalBytesSnapshot; })); this.activeProfile.newBytes = this.numBytes - startBytes; this.activeProfile.newTensors = this.numTensors - startNumTensors; return [2 /*return*/, this.activeProfile]; }); }); }; Engine.prototype.shouldRecord = function () { return this.activeTape != null && this.customGradientDepth === 0; }; Engine.prototype.addTapeNode = function (inputs, result, gradientsFunc) { var inputsMap = {}; inputs.forEach(function (input, idx) { inputsMap[idx] = input; }); var gradient = function (dy) { var res = gradientsFunc(dy); var resMap = {}; res.forEach(function (r, idx) { resMap[idx] = function () { return r; }; }); return resMap; }; var tapeNode = { id: this.nextTapeNodeId++, name: this.activeScope.name, inputs: inputsMap, outputs: [result], gradient: gradient }; this.activeTape.push(tapeNode); }; Engine.prototype.keep = function (result) { if (this.scopeStack.length === 1 && this.safeMode) { throw new Error('Safe mode is ON. Enclose all tensor operations inside tf.tidy(): ' + 'tf.tidy(() => {...}) to avoid memory leaks.'); } this.keepTensors.add(result.id); return result; }; /** * Start a scope. Use this with endScope() to achieve the same functionality * as scope() without the need for a function closure. */ Engine.prototype.startScope = function (name, gradientsMode) { if (gradientsMode === void 0) { gradientsMode = false; } if (gradientsMode && this.gradientScopeCount === 0) { this.activeTape = []; } if (gradientsMode) { this.gradientScopeCount++; } var scopeInfo = { track: [], name: 'unnamed scope' }; if (name) { scopeInfo.name = name; } this.scopeStack.push(scopeInfo); this.activeScope = scopeInfo; }; /** * End a scope. Use this with startScope() to achieve the same functionality * as scope() without the need for a function closure. */ Engine.prototype.endScope = function (result, gradientsMode) { var _this = this; if (gradientsMode === void 0) { gradientsMode = false; } if (gradientsMode) { this.gradientScopeCount--; if (this.gradientScopeCount === 0) { this.activeTape = null; } } var tensorsToKeep = new Set(this.keepTensors); var tensorsToTrackInParent = tensor_util_1.getTensorsInContainer(result); tensorsToTrackInParent.forEach(function (tensor) { return tensorsToKeep.add(tensor.id); }); // Dispose the arrays tracked in this scope. for (var i = 0; i < this.activeScope.track.length; i++) { var tensor = this.activeScope.track[i]; if (tensorsToKeep.has(tensor.id)) { continue; } if (this.activeTape != null) { tensorsToTrackInParent.push(tensor); } else { tensor.dispose(); } } var oldScope = this.scopeStack.pop(); this.activeScope = this.scopeStack.length === 0 ? null : this.scopeStack[this.scopeStack.length - 1]; // Track the current result in the parent scope. tensorsToTrackInParent.forEach(function (tensor) { // Only track the tensor if was allocated in the inner scope and is not // globally kept. if (!_this.keepTensors.has(tensor.id) && tensor_util_1.isTensorInList(tensor, oldScope.track)) { _this.track(tensor); } }); }; /** * Returns gradients of `f` with respect to each of the `xs`. The gradients * returned are of the same length as `xs`, but some might be null if `f` was * not a function of that `x`. It also takes optional dy to multiply the * gradient, which defaults to `1`. */ Engine.prototype.gradients = function (f, xs, dy, allowNoGradients) { var _this = this; if (allowNoGradients === void 0) { allowNoGradients = false; } util.assert(xs.length > 0, 'gradients() received an empty list of xs.'); if (dy != null && dy.dtype !== 'float32') { throw new Error("dy must have 'float32' dtype, but has '" + dy.dtype + "'"); } return this.tidy('gradients', function () { var y = f(); util.assert(y instanceof tensor_1.Tensor, 'The result y returned by f() must be a tensor.'); // Filter out the nodes that don't connect x => y. var filteredTape = tape_1.getFilteredNodesXToY(_this.activeTape, xs, y); if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) { throw new Error('Cannot compute gradient of y=f(x) with respect to x. Make sure ' + 'that the f you passed encloses all operations that lead from x ' + 'to y.'); } var accumulatedGradientMap = {}; accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy; // Backprop gradients through the filtered nodes. tape_1.backpropagateGradients(accumulatedGradientMap, filteredTape); var grads = xs.map(function (x) { return accumulatedGradientMap[x.id]; }); return { value: y, grads: grads }; }, true /* gradientsMode */); }; Engine.prototype.customGrad = function (f) { var _this = this; util.assert(util.isFunction(f), 'The f passed in customGrad(f) must be a function.'); return function () { var inputs = []; for (var _i = 0; _i < arguments.length; _i++) { inputs[_i] = arguments[_i]; } util.assert(inputs.every(function (t) { return t instanceof tensor_1.Tensor; }), 'The args passed in customGrad(f)(x1, x2,...) must all be tensors'); var gradientsFunc; var result; _this.scopedRun(function () { return _this.customGradientDepth++; }, function () { return _this.customGradientDepth--; }, function () { var gradientsMode = true; result = _this.tidy(f.name, function () { var _a = f.apply(void 0, inputs), value = _a.value, gradFunc = _a.gradFunc; util.assert(value instanceof tensor_1.Tensor, 'The function f passed in customGrad(f) must return an ' + 'object where `obj.value` is a tensor'); util.assert(util.isFunction(gradFunc), 'The function f passed in customGrad(f) must return an ' + 'object where `obj.gradFunc` is a function.'); gradientsFunc = gradFunc; return value; }, gradientsMode); }); if (_this.shouldRecord()) { var gradFunc = function (dy) { var res = gradientsFunc(dy); var grads = Array.isArray(res) ? res : [res]; util.assert(grads.length === inputs.length, 'The function f passed in customGrad(f) must return an object ' + 'where `obj.gradFunc` is a function that returns the same ' + 'number of tensors as inputs passed to f(...).'); util.assert(grads.every(function (t) { return t instanceof tensor_1.Tensor; }), 'The function f passed in customGrad(f) must return an object ' + 'where `obj.gradFunc` is a function that returns a list of ' + 'only tensors.'); return grads; }; _this.addTapeNode(inputs, result, gradFunc); } return result; }; }; // Forwarding to backend. Engine.prototype.write = function (dataId, values) { var info = this.tensorInfo.get(dataId); // Bytes for string tensors are counted when writing. if (info.dtype === 'string') { var newBytes = util_1.bytesFromStringArray(values); this.numBytes += newBytes - info.bytes; info.bytes = newBytes; } if (this.backend !== info.backend) { // Delete the tensor from the old backend and move it to the new backend. info.backend.disposeData(dataId); info.backend = this.backend; this.backend.register(dataId, info.shape, info.dtype); } this.backend.write(dataId, values); }; Engine.prototype.readSync = function (dataId) { // Route the read to the correct backend. var info = this.tensorInfo.get(dataId); return info.backend.readSync(dataId); }; Engine.prototype.read = function (dataId) { // Route the read to the correct backend. var info = this.tensorInfo.get(dataId); return info.backend.read(dataId); }; Engine.prototype.fromPixels = function (pixels, numChannels) { return this.backend.fromPixels(pixels, numChannels); }; Engine.prototype.time = function (query) { return __awaiter(this, void 0, void 0, function () { var start, timingInfo; return __generator(this, function (_a) { switch (_a.label) { case 0: start = util_1.now(); return [4 /*yield*/, this.backend.time(query)]; case 1: timingInfo = _a.sent(); timingInfo.wallMs = util_1.now() - start; return [2 /*return*/, timingInfo]; } }); }); }; /** * Tracks a Tensor in the current scope to be automatically cleaned up * when the current scope ends, and returns the value. * * @param result The Tensor to track in the current scope. */ Engine.prototype.track = function (result) { if (this.scopeStack.length === 1 && this.safeMode) { throw new Error('Safe mode is ON. Enclose all tensor operations inside tf.tidy(): ' + 'tf.tidy(() => {op();...}); to avoid memory leaks.'); } if (this.activeScope != null) { this.activeScope.track.push(result); } return result; }; Engine.nextTensorId = 0; Engine.nextVariableId = 0; return Engine; }()); exports.Engine = Engine; function ones(shape) { var values = util_1.makeOnesTypedArray(util_1.sizeFromShape(shape), 'float32'); return tensor_1.Tensor.make(shape, { values: values }); } //# sourceMappingURL=engine.js.map