@tensorflow-models/coco-ssd
Version:
Object detection model (coco-ssd) in TensorFlow.js
81 lines • 3.63 kB
JavaScript
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
Object.defineProperty(exports, "__esModule", { value: true });
var tf = require("./index");
var jasmine_util_1 = require("./jasmine_util");
var test_util_1 = require("./test_util");
jasmine_util_1.describeWithFlags('tf.buffer', test_util_1.ALL_ENVS, function () {
it('float32', function () {
var buff = tf.buffer([1, 2, 3], 'float32');
buff.set(1.3, 0, 0, 0);
buff.set(2.9, 0, 1, 0);
expect(buff.get(0, 0, 0)).toBeCloseTo(1.3);
expect(buff.get(0, 0, 1)).toBeCloseTo(0);
expect(buff.get(0, 0, 2)).toBeCloseTo(0);
expect(buff.get(0, 1, 0)).toBeCloseTo(2.9);
expect(buff.get(0, 1, 1)).toBeCloseTo(0);
expect(buff.get(0, 1, 2)).toBeCloseTo(0);
test_util_1.expectArraysClose(buff.toTensor(), [1.3, 0, 0, 2.9, 0, 0]);
test_util_1.expectArraysClose(buff.values, new Float32Array([1.3, 0, 0, 2.9, 0, 0]));
});
it('int32', function () {
var buff = tf.buffer([2, 3], 'int32');
buff.set(1.3, 0, 0);
buff.set(2.1, 1, 1);
expect(buff.get(0, 0)).toEqual(1);
expect(buff.get(0, 1)).toEqual(0);
expect(buff.get(0, 2)).toEqual(0);
expect(buff.get(1, 0)).toEqual(0);
expect(buff.get(1, 1)).toEqual(2);
expect(buff.get(1, 2)).toEqual(0);
test_util_1.expectArraysClose(buff.toTensor(), [1, 0, 0, 0, 2, 0]);
test_util_1.expectArraysClose(buff.values, new Int32Array([1, 0, 0, 0, 2, 0]));
});
it('bool', function () {
var buff = tf.buffer([4], 'bool');
buff.set(true, 1);
buff.set(true, 2);
expect(buff.get(0)).toBeFalsy();
expect(buff.get(1)).toBeTruthy();
expect(buff.get(2)).toBeTruthy();
expect(buff.get(3)).toBeFalsy();
test_util_1.expectArraysClose(buff.toTensor(), [0, 1, 1, 0]);
test_util_1.expectArraysClose(buff.values, new Uint8Array([0, 1, 1, 0]));
});
it('string', function () {
var buff = tf.buffer([2, 2], 'string');
buff.set('first', 0, 0);
buff.set('third', 1, 0);
expect(buff.get(0, 0)).toEqual('first');
expect(buff.get(0, 1)).toBeFalsy();
expect(buff.get(1, 0)).toEqual('third');
expect(buff.get(1, 1)).toBeFalsy();
test_util_1.expectArraysEqual(buff.toTensor(), ['first', null, 'third', null]);
});
it('throws when passed non-integer shape', function () {
var msg = 'Tensor must have a shape comprised of positive ' +
'integers but got shape [2,2.2].';
expect(function () { return tf.buffer([2, 2.2]); }).toThrowError(msg);
});
it('throws when passed negative shape', function () {
var msg = 'Tensor must have a shape comprised of positive ' +
'integers but got shape [2,-2].';
expect(function () { return tf.buffer([2, -2]); }).toThrowError(msg);
});
});
//# sourceMappingURL=buffer_test.js.map
;