UNPKG

@tensorflow-models/coco-ssd

Version:

Object detection model (coco-ssd) in TensorFlow.js

1,407 lines (1,264 loc) 61.3 kB
/*eslint-disable block-scoped-var, no-redeclare, no-control-regex, no-prototype-builtins*/ "use strict"; var $protobuf = require("protobufjs/minimal"); var $Reader = $protobuf.Reader, $util = $protobuf.util; var $root = $protobuf.roots["default"] || ($protobuf.roots["default"] = {}); $root.tensorflow = (function() { var tensorflow = {}; tensorflow.Any = (function() { function Any(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } Any.prototype.typeUrl = ""; Any.prototype.value = $util.newBuffer([]); Any.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.Any(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.typeUrl = r.string(); break; case 2: m.value = r.bytes(); break; default: r.skipType(t & 7); break; } } return m; }; return Any; })(); tensorflow.DataType = (function() { var valuesById = {}, values = Object.create(valuesById); values[valuesById[0] = "DT_INVALID"] = 0; values[valuesById[1] = "DT_FLOAT"] = 1; values[valuesById[2] = "DT_DOUBLE"] = 2; values[valuesById[3] = "DT_INT32"] = 3; values[valuesById[4] = "DT_UINT8"] = 4; values[valuesById[5] = "DT_INT16"] = 5; values[valuesById[6] = "DT_INT8"] = 6; values[valuesById[7] = "DT_STRING"] = 7; values[valuesById[8] = "DT_COMPLEX64"] = 8; values[valuesById[9] = "DT_INT64"] = 9; values[valuesById[10] = "DT_BOOL"] = 10; values[valuesById[11] = "DT_QINT8"] = 11; values[valuesById[12] = "DT_QUINT8"] = 12; values[valuesById[13] = "DT_QINT32"] = 13; values[valuesById[14] = "DT_BFLOAT16"] = 14; values[valuesById[101] = "DT_FLOAT_REF"] = 101; values[valuesById[102] = "DT_DOUBLE_REF"] = 102; values[valuesById[103] = "DT_INT32_REF"] = 103; values[valuesById[104] = "DT_UINT8_REF"] = 104; values[valuesById[105] = "DT_INT16_REF"] = 105; values[valuesById[106] = "DT_INT8_REF"] = 106; values[valuesById[107] = "DT_STRING_REF"] = 107; values[valuesById[108] = "DT_COMPLEX64_REF"] = 108; values[valuesById[109] = "DT_INT64_REF"] = 109; values[valuesById[110] = "DT_BOOL_REF"] = 110; values[valuesById[111] = "DT_QINT8_REF"] = 111; values[valuesById[112] = "DT_QUINT8_REF"] = 112; values[valuesById[113] = "DT_QINT32_REF"] = 113; values[valuesById[114] = "DT_BFLOAT16_REF"] = 114; return values; })(); tensorflow.TensorShape = (function() { function TensorShape(p) { this.dim = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } TensorShape.prototype.dim = $util.emptyArray; TensorShape.prototype.unknownRank = false; TensorShape.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.TensorShape(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 2: if (!(m.dim && m.dim.length)) m.dim = []; m.dim.push($root.tensorflow.TensorShape.Dim.decode(r, r.uint32())); break; case 3: m.unknownRank = r.bool(); break; default: r.skipType(t & 7); break; } } return m; }; TensorShape.Dim = (function() { function Dim(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } Dim.prototype.size = $util.Long ? $util.Long.fromBits(0,0,false) : 0; Dim.prototype.name = ""; Dim.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.TensorShape.Dim(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.size = r.int64(); break; case 2: m.name = r.string(); break; default: r.skipType(t & 7); break; } } return m; }; return Dim; })(); return TensorShape; })(); tensorflow.Tensor = (function() { function Tensor(p) { this.floatVal = []; this.doubleVal = []; this.intVal = []; this.stringVal = []; this.scomplexVal = []; this.int64Val = []; this.boolVal = []; this.uint32Val = []; this.uint64Val = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } Tensor.prototype.dtype = 0; Tensor.prototype.tensorShape = null; Tensor.prototype.versionNumber = 0; Tensor.prototype.tensorContent = $util.newBuffer([]); Tensor.prototype.floatVal = $util.emptyArray; Tensor.prototype.doubleVal = $util.emptyArray; Tensor.prototype.intVal = $util.emptyArray; Tensor.prototype.stringVal = $util.emptyArray; Tensor.prototype.scomplexVal = $util.emptyArray; Tensor.prototype.int64Val = $util.emptyArray; Tensor.prototype.boolVal = $util.emptyArray; Tensor.prototype.uint32Val = $util.emptyArray; Tensor.prototype.uint64Val = $util.emptyArray; Tensor.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.Tensor(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.dtype = r.int32(); break; case 2: m.tensorShape = $root.tensorflow.TensorShape.decode(r, r.uint32()); break; case 3: m.versionNumber = r.int32(); break; case 4: m.tensorContent = r.bytes(); break; case 5: if (!(m.floatVal && m.floatVal.length)) m.floatVal = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.floatVal.push(r.float()); } else m.floatVal.push(r.float()); break; case 6: if (!(m.doubleVal && m.doubleVal.length)) m.doubleVal = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.doubleVal.push(r.double()); } else m.doubleVal.push(r.double()); break; case 7: if (!(m.intVal && m.intVal.length)) m.intVal = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.intVal.push(r.int32()); } else m.intVal.push(r.int32()); break; case 8: if (!(m.stringVal && m.stringVal.length)) m.stringVal = []; m.stringVal.push(r.bytes()); break; case 9: if (!(m.scomplexVal && m.scomplexVal.length)) m.scomplexVal = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.scomplexVal.push(r.float()); } else m.scomplexVal.push(r.float()); break; case 10: if (!(m.int64Val && m.int64Val.length)) m.int64Val = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.int64Val.push(r.int64()); } else m.int64Val.push(r.int64()); break; case 11: if (!(m.boolVal && m.boolVal.length)) m.boolVal = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.boolVal.push(r.bool()); } else m.boolVal.push(r.bool()); break; case 16: if (!(m.uint32Val && m.uint32Val.length)) m.uint32Val = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.uint32Val.push(r.uint32()); } else m.uint32Val.push(r.uint32()); break; case 17: if (!(m.uint64Val && m.uint64Val.length)) m.uint64Val = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.uint64Val.push(r.uint64()); } else m.uint64Val.push(r.uint64()); break; default: r.skipType(t & 7); break; } } return m; }; return Tensor; })(); tensorflow.AttrValue = (function() { function AttrValue(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } AttrValue.prototype.list = null; AttrValue.prototype.s = $util.newBuffer([]); AttrValue.prototype.i = $util.Long ? $util.Long.fromBits(0,0,false) : 0; AttrValue.prototype.f = 0; AttrValue.prototype.b = false; AttrValue.prototype.type = 0; AttrValue.prototype.shape = null; AttrValue.prototype.tensor = null; AttrValue.prototype.placeholder = ""; AttrValue.prototype.func = null; var $oneOfFields; Object.defineProperty(AttrValue.prototype, "value", { get: $util.oneOfGetter($oneOfFields = ["list", "s", "i", "f", "b", "type", "shape", "tensor", "placeholder", "func"]), set: $util.oneOfSetter($oneOfFields) }); AttrValue.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.AttrValue(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.list = $root.tensorflow.AttrValue.ListValue.decode(r, r.uint32()); break; case 2: m.s = r.bytes(); break; case 3: m.i = r.int64(); break; case 4: m.f = r.float(); break; case 5: m.b = r.bool(); break; case 6: m.type = r.int32(); break; case 7: m.shape = $root.tensorflow.TensorShape.decode(r, r.uint32()); break; case 8: m.tensor = $root.tensorflow.Tensor.decode(r, r.uint32()); break; case 9: m.placeholder = r.string(); break; case 10: m.func = $root.tensorflow.NameAttrList.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; AttrValue.ListValue = (function() { function ListValue(p) { this.s = []; this.i = []; this.f = []; this.b = []; this.type = []; this.shape = []; this.tensor = []; this.func = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } ListValue.prototype.s = $util.emptyArray; ListValue.prototype.i = $util.emptyArray; ListValue.prototype.f = $util.emptyArray; ListValue.prototype.b = $util.emptyArray; ListValue.prototype.type = $util.emptyArray; ListValue.prototype.shape = $util.emptyArray; ListValue.prototype.tensor = $util.emptyArray; ListValue.prototype.func = $util.emptyArray; ListValue.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.AttrValue.ListValue(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 2: if (!(m.s && m.s.length)) m.s = []; m.s.push(r.bytes()); break; case 3: if (!(m.i && m.i.length)) m.i = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.i.push(r.int64()); } else m.i.push(r.int64()); break; case 4: if (!(m.f && m.f.length)) m.f = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.f.push(r.float()); } else m.f.push(r.float()); break; case 5: if (!(m.b && m.b.length)) m.b = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.b.push(r.bool()); } else m.b.push(r.bool()); break; case 6: if (!(m.type && m.type.length)) m.type = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.type.push(r.int32()); } else m.type.push(r.int32()); break; case 7: if (!(m.shape && m.shape.length)) m.shape = []; m.shape.push($root.tensorflow.TensorShape.decode(r, r.uint32())); break; case 8: if (!(m.tensor && m.tensor.length)) m.tensor = []; m.tensor.push($root.tensorflow.Tensor.decode(r, r.uint32())); break; case 9: if (!(m.func && m.func.length)) m.func = []; m.func.push($root.tensorflow.NameAttrList.decode(r, r.uint32())); break; default: r.skipType(t & 7); break; } } return m; }; return ListValue; })(); return AttrValue; })(); tensorflow.NameAttrList = (function() { function NameAttrList(p) { this.attr = {}; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } NameAttrList.prototype.name = ""; NameAttrList.prototype.attr = $util.emptyObject; NameAttrList.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.NameAttrList(), k; while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.name = r.string(); break; case 2: r.skip().pos++; if (m.attr === $util.emptyObject) m.attr = {}; k = r.string(); r.pos++; m.attr[k] = $root.tensorflow.AttrValue.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; return NameAttrList; })(); tensorflow.NodeDef = (function() { function NodeDef(p) { this.input = []; this.attr = {}; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } NodeDef.prototype.name = ""; NodeDef.prototype.op = ""; NodeDef.prototype.input = $util.emptyArray; NodeDef.prototype.device = ""; NodeDef.prototype.attr = $util.emptyObject; NodeDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.NodeDef(), k; while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.name = r.string(); break; case 2: m.op = r.string(); break; case 3: if (!(m.input && m.input.length)) m.input = []; m.input.push(r.string()); break; case 4: m.device = r.string(); break; case 5: r.skip().pos++; if (m.attr === $util.emptyObject) m.attr = {}; k = r.string(); r.pos++; m.attr[k] = $root.tensorflow.AttrValue.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; return NodeDef; })(); tensorflow.VersionDef = (function() { function VersionDef(p) { this.badConsumers = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } VersionDef.prototype.producer = 0; VersionDef.prototype.minConsumer = 0; VersionDef.prototype.badConsumers = $util.emptyArray; VersionDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.VersionDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.producer = r.int32(); break; case 2: m.minConsumer = r.int32(); break; case 3: if (!(m.badConsumers && m.badConsumers.length)) m.badConsumers = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.badConsumers.push(r.int32()); } else m.badConsumers.push(r.int32()); break; default: r.skipType(t & 7); break; } } return m; }; return VersionDef; })(); tensorflow.GraphDef = (function() { function GraphDef(p) { this.node = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } GraphDef.prototype.node = $util.emptyArray; GraphDef.prototype.versions = null; GraphDef.prototype.library = null; GraphDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.GraphDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: if (!(m.node && m.node.length)) m.node = []; m.node.push($root.tensorflow.NodeDef.decode(r, r.uint32())); break; case 4: m.versions = $root.tensorflow.VersionDef.decode(r, r.uint32()); break; case 2: m.library = $root.tensorflow.FunctionDefLibrary.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; return GraphDef; })(); tensorflow.CollectionDef = (function() { function CollectionDef(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } CollectionDef.prototype.nodeList = null; CollectionDef.prototype.bytesList = null; CollectionDef.prototype.int64List = null; CollectionDef.prototype.floatList = null; CollectionDef.prototype.anyList = null; var $oneOfFields; Object.defineProperty(CollectionDef.prototype, "kind", { get: $util.oneOfGetter($oneOfFields = ["nodeList", "bytesList", "int64List", "floatList", "anyList"]), set: $util.oneOfSetter($oneOfFields) }); CollectionDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.CollectionDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.nodeList = $root.tensorflow.CollectionDef.NodeList.decode(r, r.uint32()); break; case 2: m.bytesList = $root.tensorflow.CollectionDef.BytesList.decode(r, r.uint32()); break; case 3: m.int64List = $root.tensorflow.CollectionDef.Int64List.decode(r, r.uint32()); break; case 4: m.floatList = $root.tensorflow.CollectionDef.FloatList.decode(r, r.uint32()); break; case 5: m.anyList = $root.tensorflow.CollectionDef.AnyList.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; CollectionDef.NodeList = (function() { function NodeList(p) { this.value = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } NodeList.prototype.value = $util.emptyArray; NodeList.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.CollectionDef.NodeList(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: if (!(m.value && m.value.length)) m.value = []; m.value.push(r.string()); break; default: r.skipType(t & 7); break; } } return m; }; return NodeList; })(); CollectionDef.BytesList = (function() { function BytesList(p) { this.value = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } BytesList.prototype.value = $util.emptyArray; BytesList.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.CollectionDef.BytesList(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: if (!(m.value && m.value.length)) m.value = []; m.value.push(r.bytes()); break; default: r.skipType(t & 7); break; } } return m; }; return BytesList; })(); CollectionDef.Int64List = (function() { function Int64List(p) { this.value = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } Int64List.prototype.value = $util.emptyArray; Int64List.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.CollectionDef.Int64List(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: if (!(m.value && m.value.length)) m.value = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.value.push(r.int64()); } else m.value.push(r.int64()); break; default: r.skipType(t & 7); break; } } return m; }; return Int64List; })(); CollectionDef.FloatList = (function() { function FloatList(p) { this.value = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } FloatList.prototype.value = $util.emptyArray; FloatList.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.CollectionDef.FloatList(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: if (!(m.value && m.value.length)) m.value = []; if ((t & 7) === 2) { var c2 = r.uint32() + r.pos; while (r.pos < c2) m.value.push(r.float()); } else m.value.push(r.float()); break; default: r.skipType(t & 7); break; } } return m; }; return FloatList; })(); CollectionDef.AnyList = (function() { function AnyList(p) { this.value = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } AnyList.prototype.value = $util.emptyArray; AnyList.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.CollectionDef.AnyList(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: if (!(m.value && m.value.length)) m.value = []; m.value.push($root.tensorflow.Any.decode(r, r.uint32())); break; default: r.skipType(t & 7); break; } } return m; }; return AnyList; })(); return CollectionDef; })(); tensorflow.SaverDef = (function() { function SaverDef(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } SaverDef.prototype.filenameTensorName = ""; SaverDef.prototype.saveTensorName = ""; SaverDef.prototype.restoreOpName = ""; SaverDef.prototype.maxToKeep = 0; SaverDef.prototype.sharded = false; SaverDef.prototype.keepCheckpointEveryNHours = 0; SaverDef.prototype.version = 0; SaverDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.SaverDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.filenameTensorName = r.string(); break; case 2: m.saveTensorName = r.string(); break; case 3: m.restoreOpName = r.string(); break; case 4: m.maxToKeep = r.int32(); break; case 5: m.sharded = r.bool(); break; case 6: m.keepCheckpointEveryNHours = r.float(); break; case 7: m.version = r.int32(); break; default: r.skipType(t & 7); break; } } return m; }; SaverDef.CheckpointFormatVersion = (function() { var valuesById = {}, values = Object.create(valuesById); values[valuesById[0] = "LEGACY"] = 0; values[valuesById[1] = "V1"] = 1; values[valuesById[2] = "V2"] = 2; return values; })(); return SaverDef; })(); tensorflow.TensorInfo = (function() { function TensorInfo(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } TensorInfo.prototype.name = ""; TensorInfo.prototype.cooSparse = null; TensorInfo.prototype.dtype = 0; TensorInfo.prototype.tensorShape = null; var $oneOfFields; Object.defineProperty(TensorInfo.prototype, "encoding", { get: $util.oneOfGetter($oneOfFields = ["name", "cooSparse"]), set: $util.oneOfSetter($oneOfFields) }); TensorInfo.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.TensorInfo(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.name = r.string(); break; case 4: m.cooSparse = $root.tensorflow.TensorInfo.CooSparse.decode(r, r.uint32()); break; case 2: m.dtype = r.int32(); break; case 3: m.tensorShape = $root.tensorflow.TensorShape.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; TensorInfo.CooSparse = (function() { function CooSparse(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } CooSparse.prototype.valuesTensorName = ""; CooSparse.prototype.indicesTensorName = ""; CooSparse.prototype.denseShapeTensorName = ""; CooSparse.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.TensorInfo.CooSparse(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.valuesTensorName = r.string(); break; case 2: m.indicesTensorName = r.string(); break; case 3: m.denseShapeTensorName = r.string(); break; default: r.skipType(t & 7); break; } } return m; }; return CooSparse; })(); return TensorInfo; })(); tensorflow.SignatureDef = (function() { function SignatureDef(p) { this.inputs = {}; this.outputs = {}; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } SignatureDef.prototype.inputs = $util.emptyObject; SignatureDef.prototype.outputs = $util.emptyObject; SignatureDef.prototype.methodName = ""; SignatureDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.SignatureDef(), k; while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: r.skip().pos++; if (m.inputs === $util.emptyObject) m.inputs = {}; k = r.string(); r.pos++; m.inputs[k] = $root.tensorflow.TensorInfo.decode(r, r.uint32()); break; case 2: r.skip().pos++; if (m.outputs === $util.emptyObject) m.outputs = {}; k = r.string(); r.pos++; m.outputs[k] = $root.tensorflow.TensorInfo.decode(r, r.uint32()); break; case 3: m.methodName = r.string(); break; default: r.skipType(t & 7); break; } } return m; }; return SignatureDef; })(); tensorflow.AssetFileDef = (function() { function AssetFileDef(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } AssetFileDef.prototype.tensorInfo = null; AssetFileDef.prototype.filename = ""; AssetFileDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.AssetFileDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.tensorInfo = $root.tensorflow.TensorInfo.decode(r, r.uint32()); break; case 2: m.filename = r.string(); break; default: r.skipType(t & 7); break; } } return m; }; return AssetFileDef; })(); tensorflow.OpDef = (function() { function OpDef(p) { this.inputArg = []; this.outputArg = []; this.attr = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } OpDef.prototype.name = ""; OpDef.prototype.inputArg = $util.emptyArray; OpDef.prototype.outputArg = $util.emptyArray; OpDef.prototype.attr = $util.emptyArray; OpDef.prototype.deprecation = null; OpDef.prototype.summary = ""; OpDef.prototype.description = ""; OpDef.prototype.isCommutative = false; OpDef.prototype.isAggregate = false; OpDef.prototype.isStateful = false; OpDef.prototype.allowsUninitializedInput = false; OpDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.OpDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.name = r.string(); break; case 2: if (!(m.inputArg && m.inputArg.length)) m.inputArg = []; m.inputArg.push($root.tensorflow.OpDef.ArgDef.decode(r, r.uint32())); break; case 3: if (!(m.outputArg && m.outputArg.length)) m.outputArg = []; m.outputArg.push($root.tensorflow.OpDef.ArgDef.decode(r, r.uint32())); break; case 4: if (!(m.attr && m.attr.length)) m.attr = []; m.attr.push($root.tensorflow.OpDef.AttrDef.decode(r, r.uint32())); break; case 8: m.deprecation = $root.tensorflow.OpDef.OpDeprecation.decode(r, r.uint32()); break; case 5: m.summary = r.string(); break; case 6: m.description = r.string(); break; case 18: m.isCommutative = r.bool(); break; case 16: m.isAggregate = r.bool(); break; case 17: m.isStateful = r.bool(); break; case 19: m.allowsUninitializedInput = r.bool(); break; default: r.skipType(t & 7); break; } } return m; }; OpDef.ArgDef = (function() { function ArgDef(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } ArgDef.prototype.name = ""; ArgDef.prototype.description = ""; ArgDef.prototype.type = 0; ArgDef.prototype.typeAttr = ""; ArgDef.prototype.numberAttr = ""; ArgDef.prototype.typeListAttr = ""; ArgDef.prototype.isRef = false; ArgDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.OpDef.ArgDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.name = r.string(); break; case 2: m.description = r.string(); break; case 3: m.type = r.int32(); break; case 4: m.typeAttr = r.string(); break; case 5: m.numberAttr = r.string(); break; case 6: m.typeListAttr = r.string(); break; case 16: m.isRef = r.bool(); break; default: r.skipType(t & 7); break; } } return m; }; return ArgDef; })(); OpDef.AttrDef = (function() { function AttrDef(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } AttrDef.prototype.name = ""; AttrDef.prototype.type = ""; AttrDef.prototype.defaultValue = null; AttrDef.prototype.description = ""; AttrDef.prototype.hasMinimum = false; AttrDef.prototype.minimum = $util.Long ? $util.Long.fromBits(0,0,false) : 0; AttrDef.prototype.allowedValues = null; AttrDef.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.OpDef.AttrDef(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.name = r.string(); break; case 2: m.type = r.string(); break; case 3: m.defaultValue = $root.tensorflow.AttrValue.decode(r, r.uint32()); break; case 4: m.description = r.string(); break; case 5: m.hasMinimum = r.bool(); break; case 6: m.minimum = r.int64(); break; case 7: m.allowedValues = $root.tensorflow.AttrValue.decode(r, r.uint32()); break; default: r.skipType(t & 7); break; } } return m; }; return AttrDef; })(); OpDef.OpDeprecation = (function() { function OpDeprecation(p) { if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } OpDeprecation.prototype.version = 0; OpDeprecation.prototype.explanation = ""; OpDeprecation.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.OpDef.OpDeprecation(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: m.version = r.int32(); break; case 2: m.explanation = r.string(); break; default: r.skipType(t & 7); break; } } return m; }; return OpDeprecation; })(); return OpDef; })(); tensorflow.OpList = (function() { function OpList(p) { this.op = []; if (p) for (var ks = Object.keys(p), i = 0; i < ks.length; ++i) if (p[ks[i]] != null) this[ks[i]] = p[ks[i]]; } OpList.prototype.op = $util.emptyArray; OpList.decode = function decode(r, l) { if (!(r instanceof $Reader)) r = $Reader.create(r); var c = l === undefined ? r.len : r.pos + l, m = new $root.tensorflow.OpList(); while (r.pos < c) { var t = r.uint32(); switch (t >>> 3) { case 1: