UNPKG

@techstark/opencv-js

Version:

OpenCV JavaScript version for node.js or browser

85 lines (84 loc) 3.69 kB
import type { diag_type, int, Matx_AddOp, Matx_DivOp, Matx_MatMulOp, Matx_MulOp, Matx_ScaleOp, Matx_SubOp, Matx_TOp, Vec, _T2, _Tp } from "./_types"; /** * If you need a more flexible type, use [Mat](#d3/d63/classcv_1_1Mat}) . The elements of the matrix M * are accessible using the M(i,j) notation. Most of the common matrix operations (see also * [MatrixExpressions](#d1/d10/classcv_1_1MatExpr_1MatrixExpressions}) ) are available. To do an * operation on [Matx](#de/de1/classcv_1_1Matx}) that is not implemented, you can easily convert the * matrix to [Mat](#d3/d63/classcv_1_1Mat}) and backwards: * * ```cpp * Matx33f m(1, 2, 3, * 4, 5, 6, * 7, 8, 9); * cout << sum(Mat(m*m.t())) << endl; * ``` * * Except of the plain constructor which takes a list of elements, [Matx](#de/de1/classcv_1_1Matx}) * can be initialized from a C-array: * * ```cpp * float values[] = { 1, 2, 3}; * Matx31f m(values); * ``` * * In case if C++11 features are available, std::initializer_list can be also used to initialize * [Matx](#de/de1/classcv_1_1Matx}): * * ```cpp * Matx31f m = { 1, 2, 3}; * ``` * * Source: * [opencv2/core/matx.hpp](https://github.com/opencv/opencv/tree/master/modules/core/include/opencv2/core/matx.hpp#L1185). * */ export declare class Matx { val: _Tp; constructor(); constructor(v0: _Tp); constructor(v0: _Tp, v1: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp, v7: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp, v7: _Tp, v8: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp, v7: _Tp, v8: _Tp, v9: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp, v7: _Tp, v8: _Tp, v9: _Tp, v10: _Tp, v11: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp, v7: _Tp, v8: _Tp, v9: _Tp, v10: _Tp, v11: _Tp, v12: _Tp, v13: _Tp); constructor(v0: _Tp, v1: _Tp, v2: _Tp, v3: _Tp, v4: _Tp, v5: _Tp, v6: _Tp, v7: _Tp, v8: _Tp, v9: _Tp, v10: _Tp, v11: _Tp, v12: _Tp, v13: _Tp, v14: _Tp, v15: _Tp); constructor(vals: any); constructor(arg334: any); constructor(a: Matx, b: Matx, arg335: Matx_AddOp); constructor(a: Matx, b: Matx, arg336: Matx_SubOp); constructor(arg337: any, a: Matx, alpha: _T2, arg338: Matx_ScaleOp); constructor(a: Matx, b: Matx, arg339: Matx_MulOp); constructor(a: Matx, b: Matx, arg340: Matx_DivOp); constructor(l: int, a: Matx, b: Matx, arg341: Matx_MatMulOp); constructor(a: Matx, arg342: Matx_TOp); col(i: int): Matx; ddot(v: Matx): Matx; diag(): diag_type; div(a: Matx): Matx; dot(v: Matx): Matx; get_minor(m1: int, n1: int, base_row: int, base_col: int): Matx; inv(method?: int, p_is_ok?: any): Matx; mul(a: Matx): Matx; reshape(m1: int, n1: int): Matx; row(i: int): Matx; solve(l: int, rhs: Matx, flags?: int): Matx; solve(rhs: Vec, method: int): Vec; t(): Matx; static all(alpha: _Tp): Matx; static diag(d: diag_type): Matx; static eye(): Matx; static ones(): Matx; static randn(a: _Tp, b: _Tp): Matx; static randu(a: _Tp, b: _Tp): Matx; static zeros(): Matx; } export declare const rows: any; export declare const cols: any; export declare const channels: any; export declare const shortdim: any;