UNPKG

@tanstack/db-ivm

Version:

Incremental View Maintenance for TanStack DB based on Differential Dataflow

461 lines (407 loc) 15.8 kB
import { generateKeyBetween } from 'fractional-indexing' import { DifferenceStreamWriter, UnaryOperator } from '../graph.js' import { StreamBuilder } from '../d2.js' import { MultiSet } from '../multiset.js' import { binarySearch, compareKeys, diffHalfOpen } from '../utils.js' import type { HRange } from '../utils.js' import type { DifferenceStreamReader } from '../graph.js' import type { IStreamBuilder, PipedOperator } from '../types.js' export interface TopKWithFractionalIndexOptions { limit?: number offset?: number setSizeCallback?: (getSize: () => number) => void setWindowFn?: ( windowFn: (options: { offset?: number; limit?: number }) => void, ) => void } export type TopKChanges<V> = { /** Indicates which element moves into the topK (if any) */ moveIn: IndexedValue<V> | null /** Indicates which element moves out of the topK (if any) */ moveOut: IndexedValue<V> | null } export type TopKMoveChanges<V> = { /** Flag that marks whether there were any changes to the topK */ changes: boolean /** Indicates which elements move into the topK (if any) */ moveIns: Array<IndexedValue<V>> /** Indicates which elements move out of the topK (if any) */ moveOuts: Array<IndexedValue<V>> } /** * A topK data structure that supports insertions and deletions * and returns changes to the topK. */ export interface TopK<V> { size: number insert: (value: V) => TopKChanges<V> delete: (value: V) => TopKChanges<V> } /** * Implementation of a topK data structure. * Uses a sorted array internally to store the values and keeps a topK window over that array. * Inserts and deletes are O(n) operations because worst case an element is inserted/deleted * at the start of the array which causes all the elements to shift to the right/left. */ class TopKArray<V> implements TopK<V> { #sortedValues: Array<IndexedValue<V>> = [] #comparator: (a: V, b: V) => number #topKStart: number #topKEnd: number constructor( offset: number, limit: number, comparator: (a: V, b: V) => number, ) { this.#topKStart = offset this.#topKEnd = offset + limit this.#comparator = comparator } get size(): number { const offset = this.#topKStart const limit = this.#topKEnd - this.#topKStart const available = this.#sortedValues.length - offset return Math.max(0, Math.min(limit, available)) } /** * Moves the topK window */ move({ offset, limit, }: { offset?: number limit?: number }): TopKMoveChanges<V> { const oldOffset = this.#topKStart const oldLimit = this.#topKEnd - this.#topKStart // `this.#topKEnd` can be `Infinity` if it has no limit // but `diffHalfOpen` expects a finite range // so we restrict it to the size of the topK if topKEnd is infinite const oldRange: HRange = [ this.#topKStart, this.#topKEnd === Infinity ? this.#topKStart + this.size : this.#topKEnd, ] this.#topKStart = offset ?? oldOffset this.#topKEnd = this.#topKStart + (limit ?? oldLimit) // can be `Infinity` if limit is `Infinity` // Also handle `Infinity` in the newRange const newRange: HRange = [ this.#topKStart, this.#topKEnd === Infinity ? Math.max(this.#topKStart + this.size, oldRange[1]) // since the new limit is Infinity we need to take everything (so we need to take the biggest (finite) topKEnd) : this.#topKEnd, ] const { onlyInA, onlyInB } = diffHalfOpen(oldRange, newRange) const moveIns: Array<IndexedValue<V>> = [] onlyInB.forEach((index) => { const value = this.#sortedValues[index] if (value) { moveIns.push(value) } }) const moveOuts: Array<IndexedValue<V>> = [] onlyInA.forEach((index) => { const value = this.#sortedValues[index] if (value) { moveOuts.push(value) } }) // It could be that there are changes (i.e. moveIns or moveOuts) // but that the collection is lazy so we don't have the data yet that needs to move in/out // so `moveIns` and `moveOuts` will be empty but `changes` will be true // this will tell the caller that it needs to run the graph to load more data return { moveIns, moveOuts, changes: onlyInA.length + onlyInB.length > 0 } } insert(value: V): TopKChanges<V> { const result: TopKChanges<V> = { moveIn: null, moveOut: null } // Lookup insert position const index = this.#findIndex(value) // Generate fractional index based on the fractional indices of the elements before and after it const indexBefore = index === 0 ? null : getIndex(this.#sortedValues[index - 1]!) const indexAfter = index === this.#sortedValues.length ? null : getIndex(this.#sortedValues[index]!) const fractionalIndex = generateKeyBetween(indexBefore, indexAfter) // Insert the value at the correct position const val = indexedValue(value, fractionalIndex) // Splice is O(n) where n = all elements in the collection (i.e. n >= k) ! this.#sortedValues.splice(index, 0, val) // Check if the topK changed if (index < this.#topKEnd) { // The inserted element is either before the top K or within the top K // If it is before the top K then it moves the element that was right before the topK into the topK // If it is within the top K then the inserted element moves into the top K // In both cases the last element of the old top K now moves out of the top K const moveInIndex = Math.max(index, this.#topKStart) if (moveInIndex < this.#sortedValues.length) { // We actually have a topK // because in some cases there may not be enough elements in the array to reach the start of the topK // e.g. [1, 2, 3] with K = 2 and offset = 3 does not have a topK result.moveIn = this.#sortedValues[moveInIndex]! // We need to remove the element that falls out of the top K // The element that falls out of the top K has shifted one to the right // because of the element we inserted, so we find it at index topKEnd if (this.#topKEnd < this.#sortedValues.length) { result.moveOut = this.#sortedValues[this.#topKEnd]! } } } return result } /** * Deletes a value that may or may not be in the topK. * IMPORTANT: this assumes that the value is present in the collection * if it's not the case it will remove the element * that is on the position where the provided `value` would be. */ delete(value: V): TopKChanges<V> { const result: TopKChanges<V> = { moveIn: null, moveOut: null } // Lookup delete position const index = this.#findIndex(value) // Remove the value at that position const [removedElem] = this.#sortedValues.splice(index, 1) // Check if the topK changed if (index < this.#topKEnd) { // The removed element is either before the top K or within the top K // If it is before the top K then the first element of the topK moves out of the topK // If it is within the top K then the removed element moves out of the topK result.moveOut = removedElem! if (index < this.#topKStart) { // The removed element is before the topK // so actually, the first element of the topK moves out of the topK // and not the element that we removed // The first element of the topK is now at index topKStart - 1 // since we removed an element before the topK const moveOutIndex = this.#topKStart - 1 if (moveOutIndex < this.#sortedValues.length) { result.moveOut = this.#sortedValues[moveOutIndex]! } else { // No value is moving out of the topK // because there are no elements in the topK result.moveOut = null } } // Since we removed an element that was before or in the topK // the first element after the topK moved one position to the left // and thus falls into the topK now const moveInIndex = this.#topKEnd - 1 if (moveInIndex < this.#sortedValues.length) { result.moveIn = this.#sortedValues[moveInIndex]! } } return result } // TODO: see if there is a way to refactor the code for insert and delete in the topK above // because they are very similar, one is shifting the topK window to the left and the other is shifting it to the right // so i have the feeling there is a common pattern here and we can implement both cases using that pattern #findIndex(value: V): number { return binarySearch(this.#sortedValues, indexedValue(value, ``), (a, b) => this.#comparator(getValue(a), getValue(b)), ) } } /** * Operator for fractional indexed topK operations * This operator maintains fractional indices for sorted elements * and only updates indices when elements move position */ export class TopKWithFractionalIndexOperator< K extends string | number, T, > extends UnaryOperator<[K, T], [K, IndexedValue<T>]> { #index: Map<K, number> = new Map() // maps keys to their multiplicity /** * topK data structure that supports insertions and deletions * and returns changes to the topK. * Elements are stored as [key, value] tuples for stable tie-breaking. */ #topK: TopK<[K, T]> constructor( id: number, inputA: DifferenceStreamReader<[K, T]>, output: DifferenceStreamWriter<[K, IndexedValue<T>]>, comparator: (a: T, b: T) => number, options: TopKWithFractionalIndexOptions, ) { super(id, inputA, output) const limit = options.limit ?? Infinity const offset = options.offset ?? 0 this.#topK = this.createTopK( offset, limit, createKeyedComparator(comparator), ) options.setSizeCallback?.(() => this.#topK.size) options.setWindowFn?.(this.moveTopK.bind(this)) } protected createTopK( offset: number, limit: number, comparator: (a: [K, T], b: [K, T]) => number, ): TopK<[K, T]> { return new TopKArray(offset, limit, comparator) } /** * Moves the topK window based on the provided offset and limit. * Any changes to the topK are sent to the output. */ moveTopK({ offset, limit }: { offset?: number; limit?: number }) { if (!(this.#topK instanceof TopKArray)) { throw new Error( `Cannot move B+-tree implementation of TopK with fractional index`, ) } const result: Array<[[K, IndexedValue<T>], number]> = [] const diff = this.#topK.move({ offset, limit }) diff.moveIns.forEach((moveIn) => this.handleMoveIn(moveIn, result)) diff.moveOuts.forEach((moveOut) => this.handleMoveOut(moveOut, result)) if (diff.changes) { // There are changes to the topK // it could be that moveIns and moveOuts are empty // because the collection is lazy, so we will run the graph again to load the data this.output.sendData(new MultiSet(result)) } } run(): void { const result: Array<[[K, IndexedValue<T>], number]> = [] for (const message of this.inputMessages()) { for (const [item, multiplicity] of message.getInner()) { const [key, value] = item this.processElement(key, value, multiplicity, result) } } if (result.length > 0) { this.output.sendData(new MultiSet(result)) } } processElement( key: K, value: T, multiplicity: number, result: Array<[[K, IndexedValue<T>], number]>, ): void { const { oldMultiplicity, newMultiplicity } = this.addKey(key, multiplicity) let res: TopKChanges<[K, T]> = { moveIn: null, moveOut: null, } if (oldMultiplicity <= 0 && newMultiplicity > 0) { // The value was invisible but should now be visible // Need to insert it into the array of sorted values res = this.#topK.insert([key, value]) } else if (oldMultiplicity > 0 && newMultiplicity <= 0) { // The value was visible but should now be invisible // Need to remove it from the array of sorted values res = this.#topK.delete([key, value]) } else { // The value was invisible and it remains invisible // or it was visible and remains visible // so it doesn't affect the topK } this.handleMoveIn(res.moveIn, result) this.handleMoveOut(res.moveOut, result) return } private handleMoveIn( moveIn: IndexedValue<[K, T]> | null, result: Array<[[K, IndexedValue<T>], number]>, ) { if (moveIn) { const [[key, value], index] = moveIn result.push([[key, [value, index]], 1]) } } private handleMoveOut( moveOut: IndexedValue<[K, T]> | null, result: Array<[[K, IndexedValue<T>], number]>, ) { if (moveOut) { const [[key, value], index] = moveOut result.push([[key, [value, index]], -1]) } } private getMultiplicity(key: K): number { return this.#index.get(key) ?? 0 } private addKey( key: K, multiplicity: number, ): { oldMultiplicity: number; newMultiplicity: number } { const oldMultiplicity = this.getMultiplicity(key) const newMultiplicity = oldMultiplicity + multiplicity if (newMultiplicity === 0) { this.#index.delete(key) } else { this.#index.set(key, newMultiplicity) } return { oldMultiplicity, newMultiplicity } } } /** * Limits the number of results based on a comparator, with optional offset. * Uses fractional indexing to minimize the number of changes when elements move positions. * Each element is assigned a fractional index that is lexicographically sortable. * When elements move, only the indices of the moved elements are updated, not all elements. * * @param comparator - A function that compares two elements * @param options - An optional object containing limit and offset properties * @returns A piped operator that orders the elements and limits the number of results */ export function topKWithFractionalIndex<KType extends string | number, T>( comparator: (a: T, b: T) => number, options?: TopKWithFractionalIndexOptions, ): PipedOperator<[KType, T], [KType, IndexedValue<T>]> { const opts = options || {} return ( stream: IStreamBuilder<[KType, T]>, ): IStreamBuilder<[KType, IndexedValue<T>]> => { const output = new StreamBuilder<[KType, IndexedValue<T>]>( stream.graph, new DifferenceStreamWriter<[KType, IndexedValue<T>]>(), ) const operator = new TopKWithFractionalIndexOperator<KType, T>( stream.graph.getNextOperatorId(), stream.connectReader(), output.writer, comparator, opts, ) stream.graph.addOperator(operator) return output } } // Abstraction for fractionally indexed values export type FractionalIndex = string export type IndexedValue<V> = [V, FractionalIndex] export function indexedValue<V>( value: V, index: FractionalIndex, ): IndexedValue<V> { return [value, index] } export function getValue<V>(indexedVal: IndexedValue<V>): V { return indexedVal[0] } export function getIndex<V>(indexedVal: IndexedValue<V>): FractionalIndex { return indexedVal[1] } /** * Creates a comparator for [key, value] tuples that first compares values, * then uses the row key as a stable tie-breaker. */ function createKeyedComparator<K extends string | number, T>( comparator: (a: T, b: T) => number, ): (a: [K, T], b: [K, T]) => number { return ([aKey, aVal], [bKey, bVal]) => { // First compare on the value const valueComparison = comparator(aVal, bVal) if (valueComparison !== 0) { return valueComparison } // If the values are equal, use the row key as tie-breaker // This provides stable, deterministic ordering since keys are string | number return compareKeys(aKey, bKey) } }