UNPKG

@stillrivercode/agentic-workflow-template

Version:

NPM package to create AI-powered GitHub workflow automation projects

216 lines (146 loc) 6.83 kB
# IDK + stillriver-ai-workflows Integration This document describes the integration between Information Dense Keywords (IDK) and stillriver-ai-workflows for enhanced PR automation. ## Overview The integration combines: - **IDK (Information Dense Keywords)**: Standardized AI command vocabulary for development tasks - **stillriver-ai-workflows**: GitHub Action for automated AI code reviews on pull requests ## Integration Architecture ### IDK Dictionary Location - **Path**: `docs/dictionary/` and `docs/AI.md` - **Access**: Via `npx @stillrivercode/information-dense-keywords docs` - **Purpose**: Provides standardized command vocabulary for AI assistants ### stillriver-ai-workflows Integration - **Workflow**: `.github/workflows/ai-pr-review.yml` - **Action**: `stillrivercode/stillriver-ai-workflows@v1` - **Purpose**: Automated AI code reviews using OpenRouter API ## Enhanced PR Workflow ### 1. PR Creation with IDK Commands Users can create PRs using IDK command vocabulary: ```bash # Example IDK commands for PR operations npx @stillrivercode/information-dense-keywords "pr create this feature with comprehensive review" npx @stillrivercode/information-dense-keywords "review this pull request for security concerns" ``` ### 2. Automated AI Review When a PR is opened or labeled with `ai-review-needed`: 1. **Test Validation**: Ensures tests are passing before review 2. **AI Review**: Uses stillriver-ai-workflows for comprehensive analysis 3. **Label Management**: Adds appropriate labels based on review outcomes 4. **Comment Posting**: Automated AI review comments on the PR ### 3. Integration Features #### Enhanced Review Prompts - The AI review system leverages IDK vocabulary for structured analysis - Reviews follow IDK patterns for consistency and clarity - AI assistants understand IDK command context when reviewing code #### Workflow Configuration ```yaml - name: Run AI Review via stillriver-ai-workflows uses: stillrivercode/stillriver-ai-workflows@v1 with: github_token: ${{ github.token }} openrouter_api_key: ${{ secrets.OPENROUTER_API_KEY }} model: ${{ vars.AI_MODEL || 'anthropic/claude-sonnet-4' }} review_type: 'full' max_tokens: 4000 temperature: 0.3 ``` #### Supported Models - **anthropic/claude-sonnet-4** (default) - **anthropic/claude-3.5-sonnet** - **openai/gpt-4-turbo** - **google/gemini-pro** ## IDK Command Categories for PR Operations ### Core Commands - **CREATE** - Generate new PR with comprehensive description - **SELECT** - Choose specific files or changes for review - **FIX** - Address issues identified in PR review - **DELETE** - Remove unnecessary changes from PR ### Development Commands - **analyze this** - Examine PR changes for patterns and issues - **debug this** - Investigate issues found in PR review - **optimize this** - Improve performance of PR changes ### Quality Assurance Commands - **review this** - Perform comprehensive PR code review - **test this** - Generate or validate tests for PR changes ### Git Operations - **pr** - Pull request operations (create, merge, review) - **commit** - Create well-formatted commits for PR - **push** - Push PR changes to remote repository ## Usage Examples ### 1. Creating a PR with IDK ```bash # Plan the feature first npx @stillrivercode/information-dense-keywords "plan this user authentication feature" # Create specification npx @stillrivercode/information-dense-keywords "spec this OAuth2 implementation" # Create PR with comprehensive description gh pr create --title "feat: add OAuth2 authentication" --body "Implements user authentication as planned in spec" ``` ### 2. Requesting AI Review ```bash # Add label to trigger AI review gh pr edit --add-label "ai-review-needed" # Or use IDK command for review request npx @stillrivercode/information-dense-keywords "review this pull request for security and performance" ``` ### 3. Following Up on Review ```bash # Address security concerns identified npx @stillrivercode/information-dense-keywords "fix security vulnerabilities identified in PR review" # Optimize performance issues npx @stillrivercode/information-dense-keywords "optimize this database query performance" ``` ## Configuration ### Required Secrets - `OPENROUTER_API_KEY`: API key for OpenRouter service - `GH_PAT`: GitHub Personal Access Token (repo scope) ### Optional Variables - `AI_MODEL`: Specify which AI model to use for reviews - `AI_DEBUG_MODE`: Enable debug logging for troubleshooting ### Labels - `ai-review-needed`: Triggers AI review workflow - `ai-reviewed`: Added after successful AI review - `ai-review-failed`: Added when AI review fails ## Benefits ### For Developers - **Standardized Commands**: Consistent vocabulary across all AI interactions - **Automated Reviews**: Comprehensive code analysis without manual effort - **Multi-Model Support**: Choice of AI models via OpenRouter - **Cost Efficient**: Built-in usage controls and monitoring ### For Teams - **Consistent Quality**: Standardized review patterns across all PRs - **Faster Feedback**: Immediate AI insights on code changes - **Security Focus**: Automated security concern identification - **Documentation**: Clear command vocabulary for all team members ## Best Practices ### 1. IDK Command Usage - Use precise IDK keywords for consistent results - Chain commands for complex workflows: "analyze this then review this then optimize this" - Follow IDK expected output formats for structured feedback ### 2. PR Review Process - Ensure tests pass before requesting AI review - Address AI feedback systematically using IDK commands - Use specific review types (security, performance) when appropriate ### 3. Workflow Optimization - Set appropriate model for task complexity - Monitor API usage to control costs - Use debug mode for troubleshooting workflow issues ## Troubleshooting ### Common Issues 1. **AI Review Not Triggering** - Check that `ai-review-needed` label is applied - Verify tests are passing - Ensure OpenRouter API key is configured 2. **Review Quality Issues** - Try different AI models via `AI_MODEL` variable - Adjust temperature and max_tokens parameters - Use specific review types for focused analysis 3. **IDK Command Issues** - Ensure IDK is installed in `docs/` directory - Check that `docs/AI.md` exists and is properly formatted - Verify command syntax matches IDK dictionary patterns ## Related Documentation - [IDK Dictionary](information-dense-keywords.md) - Complete command vocabulary - [AI Workflow Guide](ai-workflow-guide.md) - Comprehensive workflow instructions - [stillriver-ai-workflows](https://github.com/stillrivercode/stillriver-ai-workflows) - GitHub Action documentation - [OpenRouter API](https://openrouter.ai) - Multi-model AI API service